

JEE Main 29 Jan 2024 (Shift-2) (Memory Based)

The Actual Paper will be Updated with Solution After the Official Release

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. In a simple pendulum of length 10 m, string is initially kept horizontal and the bob is released. 10% of energy is lost till the bob reaches lowermost position. Then find speed of bob at lowermost position.
 - (1) 6 m/s
 - (2) $6\sqrt{5}$ m/s
 - (3) 7√5 m/s
 - (4) $4\sqrt{2}$ m/s

Answer (2)

Sol. $W_{\text{total}} = \Delta K$

$$\Rightarrow 0.9 mgl = \frac{1}{2}mv^2$$
$$\Rightarrow v = \sqrt{1.8 \times 10 \times 10}$$
$$= 6\sqrt{5} m/s$$

2. The intensity at each slit are equal for a YDSE and it is maximum (*I*_{max}) at central maxima. If *I* is intensity for

phase difference $\frac{7\pi}{2}$ between two waves (at screen). Then $\frac{1}{1-1}$ is

$$(1) \frac{1}{2}$$

1)
$$\frac{1}{2}$$
 (2) $\frac{1}{4}$
3) $\frac{3}{8}$ (4) $\frac{1}{\sqrt{2}}$

Answer (1)

(

Sol.
$$I = I_{max} \cos^2\left(\frac{\Delta \phi}{2}\right)$$

$$\frac{1}{I_{max}} = \cos^2 \frac{7\pi}{4} \qquad \because \quad \Delta \phi = \frac{7\pi}{2}$$
$$\frac{1}{I_{max}} = \cos^2\left(\frac{\pi}{4}\right) = \frac{1}{2}$$
Give yourself an extra edge

3. An electromagnetic wave has electric field given by

$$\vec{E} = (9.6\hat{j})\sin\left[2\pi\left\{30 \times 10^{6}t - \frac{1}{10}x\right\}\right], x \text{ and } t \text{ are in}$$

SI units. The maximum magnetic field is

(1) 3.2×10^{-8} (2) 9.6×10^{-8} (3) 1.7×10^{-8} (4) 10^{-7}

Answer (1)

Sol.
$$\frac{E}{B} = C$$

$$\Rightarrow B = \frac{E}{C} = 3.2 \times 10^{-8}$$

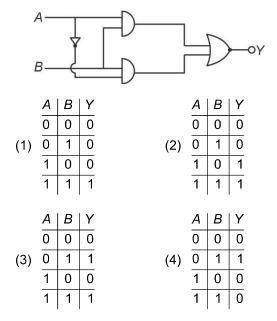
A planet at distance *r* from sun takes 200 days to
 complete one revolution around sun. What will be time

period for a planet at distance $\frac{r}{4}$ from the sun?

- (1) 50 days
- (2) 25 days
- (3) 100 days
- (4) 12.5 days

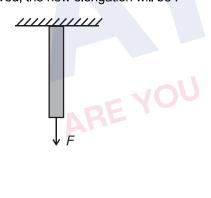
Answer (2)

Sol.
$$T^2 \propto R^3$$


$$\frac{200^2}{T^2} = \frac{r^3}{\left(\frac{r}{4}\right)^3}$$
$$\frac{200}{T} = (4)^{\frac{3}{2}}$$
$$\frac{200}{8} = T$$

www.ayjr.in T = 25 days

www.eedge.in


5. The truth table for the combination of logical gates

Answer (3)

Sol. $Y = A \cdot B + \overline{A} \cdot B = B(A + \overline{A}) = B$

 A uniform wire has length *L* and radius *r*. It is acted on by a force *F* as shown. The elongation is *∆I*. If *F* and *r* are both halved, the new elongation will be :

(2) Δl

(1) $\frac{\Delta l}{2}$

- (3) 4∆/
- (4) 2∆/

Answer (4)

Sol.
$$\Delta I = \frac{FL}{Ay} \propto \frac{F}{r^2}$$

 $\Rightarrow \Delta I' = \frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^2} \Delta I = 2\Delta I$

7. Two forces F_1 and F_2 are applied on two rods *P* and *Q* of same materials such that elongation in rods are same. If ratio of their radii is x : y and ratio of length is m : n, then ratio of $F_1 : F_2$ is

(1)
$$\left(\frac{y}{x}\right)^2 \frac{n}{m}$$

(2) $\left(\frac{x}{y}\right)^2 \cdot \frac{n}{m}$
(3) $\left(\frac{x}{y}\right)^2 \cdot \frac{m}{n}$
(4) $\left(\frac{y}{x}\right)^2 \cdot \left(\frac{m}{n}\right)$

Answer (2)

Sol.
$$\Delta l_1 = \frac{F_1 l_1}{Y A_1}, \ \Delta l_2 = \frac{F_2 l_2}{Y A_2}$$

 $\frac{F_1}{F_2} = \frac{A_1}{A_2} \times \frac{l_2}{l_1} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{l_2}{l_1}\right) = \frac{x^2}{y^2} \cdot \frac{n_2}{n_1}$

8. Two charged particles *A* and *B* have charge *q* each while masses are $m_1 \& m_2$. Both have same velocity *v* and enter into a transverse magnetic field *B* such that their radii are $r_1 \& r_2$. Then the ratio $m_1 : m_2$ is

(1)
$$\frac{r_2}{r_1}$$

(2) $\left(\frac{r_1}{r_2}\right)^2$
(3) $\frac{r_1}{r_2}$
(4) $\left(\frac{r_2}{r_1}\right)^2$

Answer (3)

Sol.
$$r = \frac{mv}{Bq}$$

 $r \propto m \Rightarrow \frac{r_1}{r_2} = \frac{m_1}{m_2}$

Give yourself an extra edge

μΤ

- drops. If surface tension of the drops is T, then find work done in this process.
 - (1) $4\pi R^2 T$
 - (2) $3\pi R^2 T$
 - (3) $8\pi R^2 T$
 - $(4) \quad \frac{1}{8}\pi R^2 T$

Answer (3)

Sol. $W = T \times$ change in area (ΔS)

From volume conservation

$$\frac{4}{3}\pi R^3 = 27\pi r^3 \times \frac{4}{3}$$

$$r = \frac{R}{3}$$

 $\therefore \quad \Delta S = 4\pi r^2 \times 27 - 4\pi R^2$

$$=4\pi \times \frac{R^2}{9} \times 27 - 4\pi R^2 = 2(4\pi R^2)$$

 $W = 8\pi R^2 T$

10. Alternating voltage and current in circuit is given as

V = (100 sinω*t*) volt

$$I = 100 \sin\left(\omega t + \frac{\pi}{3}\right) \mathrm{mA}$$

Find average power dissipated in circuit.

- (1) 2.5 w
- (2) 5 w
- (3) 10 w
- (4) 20 w

Answer (1)

Sol. $P_{\text{avg}} = IV \cos \phi = \frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \cos 60^\circ = 2.5 \text{ w}$

11. Consider a rod moving in a magnetic field as shown:

The induced emf across the ends of the rod is

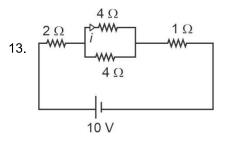
- (1) 3 mV
- (2) 6 mV
- (3) 0 V
- (4) 1 mV

Answer (1)

- **Sol.** $\varepsilon = B\ell v = 3 \text{ mV}$
- 12. A particle connected with light thread is performing vertical circular motion. Speed at point *B* (Lowermost point) is of just sufficient, so that it is able to complete its circular motion. Ignoring air friction, find the ratio of kinetic energy at *A* to that at *B*. (A being top-most point)

(1) 1:5
(2) 5:1
(3) 1:
$$7\sqrt{2}$$

(4) 1: $5\sqrt{2}$
Answer (1)
Sol. $v_A = \sqrt{gL}$
 $v_B = \sqrt{5gL}$
 $r_B = \sqrt{5gL}$


5

k_B

Give yourself an extra edge

JEE (Main)-2024 : Phase-1 (29-01-2024)-Evening

In given circuit, an ideal battery is connected with four resistances as shown. Find current *i* as mentioned in diagram.

(1) 2 A (2) 1 A

(3) 4 A (4) 0.5 A

Answer (2)

Sol. req = $2 + 2 + 1 = 5 \Omega$

 $i_b = \frac{10}{5} = 2$ A

 $i = \frac{i_b}{2} = 1 \text{ A}$

14.

15.

- 16.
- 17.
- 18.

19.

20.

SECTION - B

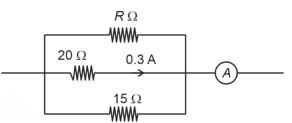
Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. A physical quantity Q depends on other physical quantities *a*, *b* and *c* as

$$Q = \frac{a^4 b^3}{c^2}$$

If maximum percentage error in measurement of a, b and c are 3%, 4% and 5% respectively, then find maximum percentage error in measurement of Q.

Answer (34)


Sol.
$$Q = \frac{a^4b^3}{c^2}$$

Give yourself an extra edge

$$\frac{\Delta Q}{Q} = 4\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + 2\frac{\Delta c}{c}$$
$$\frac{\Delta Q}{Q} \times 100 = 4(3) + 3(4) + 2(5)$$
$$= 12 + 12 + 10$$

% error
$$\frac{\Delta Q}{Q}$$
% = 34%

22. Consider the circuit shown :

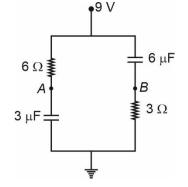
The ammeter reads 0.9 A. Value of R is _____

Answer (30)

Sol. 20 Ω & 15 Ω in parallel

$$\Rightarrow 20 \times 0.3 = 15 \times i$$

$$\Rightarrow i = 0.4 \text{ A}$$


$$\Rightarrow i_R = 0.9 - 0.3 - 0.4 \text{ A}$$

$$= 0.2 \text{ A}$$

$$\Rightarrow R \times 0.2 = 20 \times 0.3$$

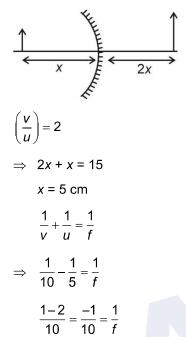
$$\Rightarrow R = 30 \Omega$$

23. Consider the circuit shown :

Charge on 6 μ F when A and B are shorted is _____ μ C.

Answer (36)

Sol. In steady state, 6 Ω and 3 Ω are in series.


$$\Rightarrow \Delta V_{6\Omega} = 6 V = \Delta V_{6\mu F}$$
$$\Rightarrow \phi = CV = 36 \mu C$$

24. Distance between twice-magnified virtual image of an object placed in front of mirror is 15 cm. Find focal length of spherical mirror in cm.

Answer (10)

- Sol. Magnified virtual image of real object
 - \Rightarrow Concave mirror

$$\Rightarrow f = -10$$

25. The displacement of a particle changing with time as $x = 6t^3 - 12t^2 + 20t + 30$. Find velocity (in m/s) of particle when it's acceleration became zero. (*t* is time in s)

Answer (12)

Sol.
$$v = \frac{dx}{dt} = 20$$

 $= 18t^2 - 24t + 20$
 $a = \frac{dv}{dt} = 36t - 24$
At $a = 0$
 $t = \frac{24}{36} = \frac{2}{3}$ sec

Then,

$$v = 18 \times \frac{4}{9} - 24 \times \frac{2}{3} + 20$$
$$= 8 - 16 + 20 = 12 \text{ m/s}$$

26. Electric field in a region is given by $\vec{E} = (6\hat{i} + 7\hat{j} + 8\hat{k})$ units. An area of 30 units is considered in *y*-*z* plane. Calculate the electric flux through this area.

Answer (180)

Sol. $\phi = \vec{E} \cdot \vec{A} = (6\hat{i} + 7\hat{j} + 8\hat{k}) \cdot 30\hat{i} = 180$

N moles of non-linear polyatomic gas (degree of freedom 6) is mixed with 2 moles of monoatomic gas. The resultant mixture has molar specific heat equal to that of a diatomic gas, then N is

Answer (4)

Sol.
$$\frac{n_1 \frac{f_1}{2} R + n_2 \frac{f_2}{2} R}{n_1 + n_2} = \frac{5}{2} R$$
$$\frac{2 \times \frac{3}{2} R + N \times \frac{6}{2} R}{N + 2} = \frac{5}{2} R$$
$$\frac{6 + 6N}{N + 2} = 5$$
$$6 + 6N = 5N + 10$$
$$N = 4$$

28. A particle starts oscillation from origin on *x*-axis with period of oscillation (6) sec and amplitude *A*. If time

aken by particle to reach from
$$x = A$$
 to $x = \frac{\sqrt{3}}{2}A$

for the first time is τ then. Value of 6τ is _____ sec.

Answer (3)

Sol.
$$x = A \sin\left(\omega t + \frac{\pi}{2}\right)$$

 $x = A \cos \omega t$
 $\frac{\sqrt{3}}{2}A = A \cos\left(\frac{2\pi}{\tau}t\right)$
 $\frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{3}t\right)$
 $\frac{\pi}{6} = \frac{t}{3}\pi$
 $t = \frac{1}{2} = 0.5$
 $6\tau = 3$
29.

Give yourself an extra edge

JEE | NEET | Class 9 - 12 Seedge JEE Main 29 Jan 2024 (Shift-2) (Memory Based)ownload App Now ■

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

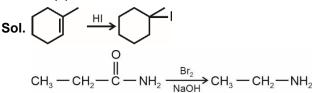
- 1. Best reducing agent among the given ions is
 - (1) Ce⁴⁺ (2) Gd²⁺
 - (3) Lu³⁺ (4) Nd³⁺

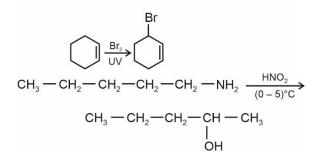
Answer (2)

- Sol. Gd²⁺ : [Xe] 5d¹4f⁷
 - $Gd^{2\text{+}}$ would get converted into $Gd^{3\text{+}}$ as $Gd^{3\text{+}}$ has stable electronic configuration
- 2. Choose the correct reaction.

(1)
$$CH_3 - CH_2 - \overrightarrow{C} - NH_2 \xrightarrow{Br_2} NaOH$$

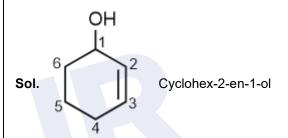
 $CH_3 - CH_2 - CH_2 - NH_2$


 \cap


(2)
$$\xrightarrow{Br_2}$$
 \xrightarrow{Br}_{Br}

(3)
$$CH_3 - CH_2 - CH_2 - CH_2 - NH_2 \xrightarrow{HNO_2} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$$

(4)


Answer (4)

- 3. IUPAC name of compound
- OH is
 - (1) Hex-2-en-1-ol
 - (2) Cyclohex-2-en-1-ol
 - (3) 3-hydroxy cyclohexene
 - (4) Cyclohex-1-en-3-ol

Answer (2)

- 4. Why does oxygen shows anomalous behaviour?
 - (1) Large size, high electronegativity
 - (2) Small size, small electronegativity
 - (3) Small size, high electronegativity absence of vacant d-orbital
 - (4) Large size, high electronegativity presence of vacant d-orbital

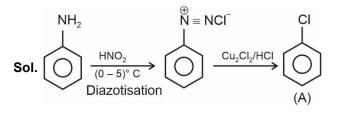
Answer (3)

- **Sol.** Oxygen shows anomalous behaviour due to small size, high electronegativity and absence of vacant d-orbital.
- 5. Match the following
 - (A) Lyman(i) IR(B) Balmer(ii) IR
 - (C) Paschen (iii) Visible
 - (D) Pfund (iv) UV
 - (1) $A \rightarrow (iv), B \rightarrow (iii)$ $C \rightarrow (i), D \rightarrow (ii)$

(2)
$$A \rightarrow (i), B \rightarrow (iii)$$

$$\mathsf{C} \to (\mathsf{ii}), \, \mathsf{D} \to (\mathsf{iv})$$

s eedge READV2 (3) $A \rightarrow (iv), B \rightarrow (ii)$ $C \rightarrow (iii), D \rightarrow (iv)$ (4) $A \rightarrow (i), B \rightarrow (ii)$ $C \rightarrow (iii), D \rightarrow (iv)$ Answer (1) **Sol.** Lyman \rightarrow UV Balmer \rightarrow Visible Paschen \rightarrow IR Pfund \rightarrow IR IUPAC name of K₂MnO₄ is 6. (1) Potassium tetraoxomanganate(VI) (2) Potassium tetraoxomanganate(III) (3) Potassium tetraoxomanganese(VI) (4) Tetraoxomanganese(VI) potassium


Answer (1)

- Sol. Correct IUPAC name of K₂MnO₄ is Potassium tetraoxomanganate(vi)
- 7. Find out final product (A)

NH₂

(i) HNO₂ (0 – 5)° C (ii) Cu₂Cl₂/HCl $\overset{\text{T}}{\mathsf{N}} \equiv \mathsf{NCI}^{-}$ NH₂ CI (1) (2) NH₂ (4) (3)

Answer (3)

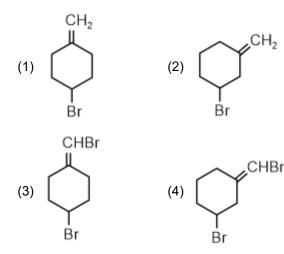
www.eedge.in Which of the following element has highest 1st 8. Ionization energy? (1) N (2) C (3) Si (4) Al Answer (1) Sol. N has highest 1st Ionization energy among C, Si, N and Al. For, N = 1402 kJ mol⁻¹ (IE₁) $C = 1086 \text{ kJ mol}^{-1} (IE_1)$ $AI = 577 \text{ kJ mol}^{-1} (IE_1)$ Si = 786 kJ mol⁻¹ (IE₁) 9. Which reagent gives bright red ppt with Ni2+ in basic medium? (1) DMG (2) Nessler's reagent (3) KCNS (4) K₄[Fe(CN)₆] Answer (1) **Sol.** $NiCl_2 + CH_3 - C = NOH$ H₂C - $CH_{2} - \dot{C} = NOH$ $H_0C - \dot{C} = N$ - CH DMG Dimethylglyoxime (Cherry red ppt.) (Bright red) 10. Match the following List-I and List-II

	List-I		List-II
	(Polymer)		(Monomer)
(A)	Starch	(i)	β-glucose
(B)	Cellulose	(ii)	Nucleotide
(C)	Nucleic acid	(iii)	α -glucose
(D)	Protein	(iv)	α -Amino acid

- (1) $A \rightarrow (i); B \rightarrow (iii); C \rightarrow (ii); D \rightarrow (iv)$
- (2) $A \rightarrow (iii); B \rightarrow (i); C \rightarrow (ii); D \rightarrow (iv)$
- (3) $A \rightarrow (iii); B \rightarrow (i); C \rightarrow (iv); D \rightarrow (ii)$
- (4) $A \rightarrow (ii); B \rightarrow (iii); C \rightarrow (i); D \rightarrow (iv)$

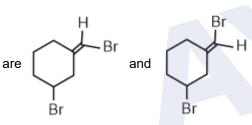
Answer (2)

Sol. Starch is polymer of α -D-glucose. Cellulose is polymer of β -D-glucose. Nucleic acid is polymer of nucleotide. Proteins are polymer of α -aminoacids.



CHBr

Br



11. Which of the following can show geometrical isomerism?

Answer (4)

Sol. The two geometrical isomers of

- 12. Which reagent is used to convert alkyl halide into alkyl isocyanide?
 - (1) KCN (2) AgCN
 - (3) KNO₂ (4) AgNO₂
- Answer (2)
- **Sol.** $R X + AgCN \rightarrow R N \equiv C + AgX$
- 13. Find the total number of sigma (σ) and π bonds in 2-formylhex-4-enoic acid.

(1) 20	(2) 22
(3) 18	(4) 24

Answer (2)

Sol. The structure of 2-formylhex-4-enoic acid is

$$\begin{array}{cccc}
O & H \\
\parallel_{1} & \parallel_{2} & _{3} & _{4} & _{5} & _{6} & _{\sigma} - \text{ bonds = 19} \\
H - O - C - C - C - C H_{2} - C H_{2} - C H = C H - C H_{3} & _{\pi} - \text{ bonds = 3} \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

- 14. A gas 'X' is added to Nessler's reagent then brown precipitate is formed, gas X is
 - (1) NH₃ (2) SO₂ (3) Cl₂ (4) Br₂

Answer (1)

Sol. 2K₂HgI₄+3KOH+NH₃ → Nessler's reagent

$$\begin{bmatrix} OHg_2 \cdot NH_2 \end{bmatrix} I + 7KI + 2H_2O \\Brown ppt \end{bmatrix}$$

Ammonia gas on reaction with Nessler's reagent to form brown ppt. Brown ppt formed is also called iodide of million's base $(H_2N - Hg - O - Hg - I)$

15. Match the following

	I (compounds)		ll (pKa)	
(a)	p-nitrophenol	(i)	10	
(b)	m-nitrophenol	(ii)	16	
(c)	Ethanol	(iii)	7.1	
(d)	Phenol	(iv)	8.3	

- (1) (a) \rightarrow (i); (b) \rightarrow (ii); (c) \rightarrow (iii); (d) \rightarrow (iv)
- (2) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (ii); (d) \rightarrow (i)
- (3) (a) \rightarrow (iv); (b) \rightarrow (iii); (c) \rightarrow (ii); (d) \rightarrow (i)
- (4) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (i); (d) \rightarrow (ii)

Answer (2)

Sol. Acidic strength order:

16. We have given some hydrocarbons

(A)
$$HC = CH$$

(B) $H_2C = CH_2$
(C) $CH_3 - C - H$
 CH_3

(D) $CH_3 - CH_2 - CH_2 - H$

Correct order of acidic strength of above hydrocarbons.

(1) A > B > C > D (2) A > B > D > C(3) C > D > B > A (4) A > C > B > D

Answer (2)

Sol. More the stability of conjugate base of given acids, more will be the acidic strength.

(A)
$$HC \equiv C^{\Theta}$$
 (more % s character more will be
stability of anion)
(B) $H_2C = CH^{\Theta}$

Give yourself an extra edge

$$\begin{array}{c} \mathsf{EE} \ \mathsf{READY?} & \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{I}_{\Theta} \\ \mathsf{C} & \mathsf{CH}_3 - \mathsf{C} \\ \mathsf{I}_{\Theta} \\ \mathsf{C} & \mathsf{CH}_3 - \mathsf{C} \end{array}$$
 (Alkyl group increases electron

| CH₃

density on carbon so stability decreases)

 $(D) \quad CH_3 - CH_2 - CH_2^{\Theta}$

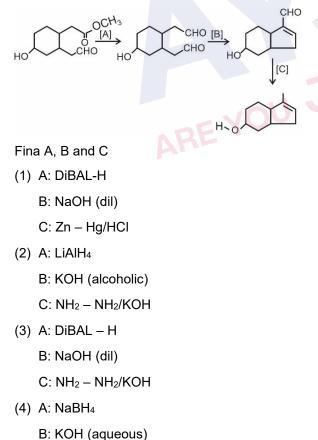
ered Rv

aadaa

Order of stability of conjugate base

So order of acidic strength

- 17. In chromatographic techniques, which of the following follows preferential adsorption?
 - (A) Column chromatography
 - (B) Thin layer chromatography
 - (C) Paper chromatography
 - (1) A only (2) B only
 - (3) C only (4) A and B both


Answer (4)

(

Sol. Column chromatography Thin layer chromatography Separation based on absorption of substance

Paper chromatography→ Partition chromatography

18. Consider the following sequence of reactions

C: Zn – Hg/HCl

Answer (3)

www.eedge.in

- Sol. (A) DiBALH Convert ester to aldehyde
 - (B) dil NaOH Aldol condensation
 - (C) NH₂ NH₂/KOH Wolff Kishner reduction
- 19. The correct statement about Zn, Cd, Hg are
 - (1) All are solid metals at room temperature
 - (2) They have high enthalpy of atomization
 - (3) All are paramagnetic
 - (4) Zn, Cd cannot show variable oxidation state but Hg can show variable oxidation state

Answer (4)

OH

Sol. Hg can show +1 and +2 O.S.

20.
$$(\bigcirc)$$
 + CHCl₃ $\xrightarrow{1) \text{ NaOH}}$ Major Product

The major product in the above reaction is

- (1) 2-hydroxybenzaldehyde
- (2) 2-hydroxybenzoic acid
- (3) 4-hydroxybenzaldehyde
- (4) 3-hydroxybenzaldehyde

Answer (1)

Sol. CHO is the major product in Reimer-

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Oxidation state of Fe (Iron) in complex formed in brown ring test.

Answer (1)

Sol. Complex formed during brown ring test is $[Fe(H_2O)_5NO]SO_4.$

NO is present as NO⁺ here.

x = +1

Oxidation state of Fe is +1

Give yourself an extra edge

22. How many of the following compounds have zero dipole moment?

NH₃, H₂O, HF, CO₂, SO₂, BF₃, CH₄

Answer (3)

Sol. CO_2 , BF_3 and CH_4 have symmetrical structures leading to $\mu = O$

23. Calculate equilibrium constant for the given following reaction at 500K.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Given molarity of NH₃(g), N₂(g) and H₂(g) at equilibrium is 1.5×10^{-2} M, 2×10^{-2} M and 3×10^{-2} M respectively.

Answer (417)

Sol.
$$K_{C} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$$

 $K_{C} = \frac{(1.5 \times 10^{-2})^{2}}{(2 \times 10^{-2}) \times (3 \times 10^{-2})^{3}}$
 $K_{C} = \frac{2.25 \times 10^{-4}}{2 \times 10^{-2} \times 27 \times 10^{-6}}$
 $K_{C} = 0.04167 \times 10^{4}$
 $K_{C} = 416.7 \approx 417$

 50 ml of 0.5 M oxalic acid is completely Neutralised by 25 ml of NaOH solution. Find out amount of NaOH (in gm) present in 25 ml of given NaOH solution.

Answer (2)

Sol. $M_1V_1N_1 = M_2V_2N_2$

(50) (0.5) (2) = (
$$M_2$$
) (25) (1)
 $M_2 = 2$

Moles of NaOH =
$$\frac{2 \times 25}{1000} = \frac{1}{20}$$

Mass of NaOH =
$$\frac{1}{20} \times 40 = 2$$
gm

If standard enthalpy of vaporization of CCl₄ is 30.5 kJ/mol, find heat absorbed for vaporization of 294 gm of CCl₄. [Nearest integer] [in kJ]

Answer (58)

Sol. Vaporization of 1 mole CCI4 requires 30.5 kJ

294 gm is
$$\frac{294}{154} = 1.91$$
 moles

Vaporization of 1.91 moles of CCI₄ will require $30.5 \times 1.91 \text{ kJ} = 58.255 \text{ kJ}$

26. Find out molality of 0.8 M H₂SO₄ solution having density of solution equal to 1.02 gm/ml (Nearest integer)

Answer (1)

Sol.
$$m = \frac{1000 \text{ M}}{10008 - \text{M}(\mu)}$$

= $\frac{1000 (0.8)}{1000 (1.02) - (0.8) (98)} = \frac{800}{1020 - 78.4}$
= $\frac{800}{941.6} = 0.849$
 ≈ 1

 Aqueous solution of [AuCl4]⁻ on electrolysis by passing current for 10 minutes, the mass of Au deposited at Cathode is 1.97 gm. Find out current required (in A) (Nearest integer)

Answer (5)

Sol.
$$Au^{3+} + 3e^- \longrightarrow Au(s)$$

1.97 gm
0.03 mole $\frac{1.97}{197} = 0.01$ mole
Charge = 0.03 × 96500
Current = $\frac{0.03 \times 96500}{10 \times 60}$
= 4.825 A
 $\approx 5A$

28. If half life of radioactive bromine (Br-82) is 36 hr, find percentage remaining after one day. [nearest integer]

Answer (63)

Sol.
$$\ln \frac{N_0}{N} = \lambda t = \frac{\ln 2}{36} \times 24$$

 $= \frac{2}{3} \ln 2$
 $\Rightarrow \frac{N_0}{N} = 2^{2/3}$
 $\Rightarrow \frac{N}{N_0} = \frac{1}{2^{2/3}}$

% age remaining = $100 \frac{N}{N_0} = \frac{100}{2^{2/3}} = 62.99$

29.

30.

Give yourself an extra edge

JEE | NEET | Class 9 - 12 🕞

Seedge JEE Main 29 Jan 2024 (Shift-2) (Memory Based)
Seedge JEE Main 29 Jan 2024 (Shift-2) (Memory Based)

MATHEMATICS

3.

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Given set = $\{1, 2, 3, ..., 50\}$

> One number is selected randomly from set. Find probability that number is multiple of 4 or 6 or 7.

(1)	$\frac{21}{50}$	(2)	18 50
(3)	8 25	(4)	21 25

Answer (1)

Sol. Take P(A) = Probability that number is multiple of 4 P(B) = Probability that number is multiple of 6 P(C) = Probability that number is multiple of 7

	$P(A) = \frac{12}{50}, P(B) = \frac{12}{50}$	$\frac{8}{50}, P(C) = \frac{7}{50}$		
	$P(A \cap B) = \frac{4}{50}$ (Mult	iple of 12)		
	$P(B \cap C) = \frac{1}{50}$ (Mult	iple of 42)		
	$P(A \cap C) = \frac{1}{50} $ (Multiple of 28)			
	$P(A \cap B \cap C) = 0$ (Me	ultiple of 84)		
	$P(A \cup B \cup C) = P(A)$ $P(B \cap C) - P(A \cap C)$	$(+ P(B) + P(C) - P(A \cap B) - P(A \cap B \cap C))$		
	$= \frac{12}{50} + \frac{8}{50} + \frac{7}{50} - \frac{4}{50}$	$\frac{1}{0} - \frac{1}{50} + 0$		
	$=$ $\frac{21}{50}$			
2.	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2x} dx \text{ is}$			
	(1) $\sqrt{2} - \sqrt{3} + 1$	(2) $2\sqrt{2} - \sqrt{3} - 1$		
	(3) $2\sqrt{2} + \sqrt{3} - 1$	(4) $\sqrt{2} + \sqrt{3} - 1$		
Answer (2)				

Sol. $\int \sin x - \cos x dx$ $\frac{\pi}{6}$ $= \int (\cos x - \sin x) dx + \int (\sin x - \cos x) dx$ $= (\sin x + \cos x)_{\frac{\pi}{3}}^{\frac{\pi}{3}} + (-\sin x - \cos x)_{\frac{\pi}{3}}^{\frac{\pi}{3}}$ $= \left| \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - \left(\sin \frac{\pi}{6} + \cos \frac{\pi}{6} \right) \right| +$ $\left[\left(-\sin\frac{\pi}{3}-\cos\frac{\pi}{3}\right)-\left(-\sin\frac{\pi}{4}+\cos\frac{\pi}{4}\right)\right]$ $= \left\lceil \sqrt{2} - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \right\rceil + \left[-\frac{\sqrt{3}}{2} - \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right\rceil$ $=2\sqrt{2}-\sqrt{3}-1$ A = {1, 2, 3, 4} minimum number of elements added to make it equivalence relation on set A containing (1, 3) and (1, 2) in it. (1) 8 (2) 9 (3) 12 (4) 16 Answer (1) **Sol.** Set $A = \{1, 2, 3, 4\}$ For reflexive relation We need to have (1, 1), (2, 2), (3, 3), (4, 4). For symmetric, (1, 3) ∈A So (3, 1) should be added And $(1, 2) \in A$ So (2, 1) should be added set has become {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1), (1, 2), (2, 1)} Now $(3, 1) \in A$ (1, 2) ∈A So (3, 2) should be added (for transitive) Then (2, 3) should be added (for symmetric) So set becomes $\{(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1), (1, 2), (2, 3)\}$ 1), (3, 2), (2, 3)}

So minimum 8 elements are added

Give yourself an extra edge

$$\begin{array}{l} & & & \text{Powered By} \\ & & & \Rightarrow \ (\beta - 8)^2 = 64 - 16 = 48 \\ \\ & \Rightarrow \ \beta = 8 \pm 4\sqrt{3} \\ & \alpha = 4\beta - 4 \\ \\ & = \ 28 \pm 16\sqrt{3} \\ & (28 + 16\sqrt{3}, \ 8 + 4\sqrt{3}) \text{ and } (28 - 16\sqrt{3}, \ 8 - 4\sqrt{3}) \\ & & (8 - \beta)(\alpha - 28) \\ \\ & \Rightarrow \ (-4\sqrt{3})(16\sqrt{3}) \\ \\ & = -192 \end{array}$$

Unit vector $\vec{u} = x\hat{i} + y\hat{j} + z\hat{k}$ makes angles 8.

$$\frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3} \text{ with } \left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}\right), \left(\frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}\right), \\ \left(\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}\right) \text{ respectively and} \\ \vec{v} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k} \text{ find } |\vec{u} - \vec{v}|. \\ (1) \quad \sqrt{\frac{5}{2}} \qquad (2) \quad \sqrt{\frac{7}{2}} \\ (3) \quad \sqrt{\frac{2}{5}} \qquad (4) \quad \sqrt{\frac{2}{7}} \end{cases}$$

Answer (1)

ARI

- **Sol.** $\frac{x}{\sqrt{2}} + \frac{z}{\sqrt{2}} = 0$...(1) $\frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}} = \frac{1}{2}$...(2) $\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = \frac{-1}{2}$...(3) \Rightarrow $y=0, z=\frac{1}{\sqrt{2}}, x=\frac{-1}{\sqrt{2}}$ $\vec{v} - \vec{u} = \sqrt{2}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ $\left|\vec{v}-\vec{u}\right|=\sqrt{2+\frac{1}{2}}$ $=\sqrt{\frac{5}{2}}$
- If first term of non-constant GP be $\frac{1}{8}$ and every 9. term is AM of next two, then $\sum_{r=1}^{20} T_r - \sum_{r=1}^{18} T_r$ is (1) 2¹⁵ (2) -215 (3) -218 (4) 2¹⁸ Answer (2)

Sol.
$$a_1 = \frac{1}{8}$$

 $a, ar, ar^2, ar^3 \dots 2ar = ar^2 + ar^3$
 $2 = r + r^2$
 $r^2 + r - 2 = 0$
 $(r + 2)(r - 1) = 0$
 $r \neq 1$
 $\Rightarrow r = -2$
 $\sum_{r=1}^{20} T_r - \sum_{r=1}^{18} T_r$
 $= \frac{a(1 - r^{20})}{1 - r} - \frac{a(1 - r^{18})}{1 - r}$
 $= \frac{1}{8} \left[\frac{1}{3} \left[1 - r^{20} - 1 + r^{18} \right] \right]$
 $= \frac{1}{24} 2^{18} [1 - 4]$
 $= -\frac{2^{18}}{8} \Rightarrow -2^{15}$
10. The mean of 5 observations is $\frac{24}{5}$ and variance is
 $\frac{194}{25}$. If the mean of first four observations is $\frac{7}{2}$,
then the variance of first four observations is $\frac{7}{2}$,
then the variance of first four observations is
(1) $\frac{3}{2}$ (2) $\frac{5}{2}$
(3) $\frac{5}{4}$ (4) $\frac{2}{3}$
Answer (3)
Sol. $\sum_{i=1}^{5} x_i = 24$
 $\frac{\sum_{i=1}^{5} x_i^2}{5} - \left(\frac{24}{5}\right)^2 = \frac{194}{25}$
 $\Rightarrow \sum x_i^2 = \frac{770}{25} \times 5 = 154$

An

Sol.
$$\sum_{i=1}^{5} x_i = 24$$
$$\sum_{i=1}^{4} \frac{x_i^2}{5} - \left(\frac{24}{5}\right)^2 = \frac{194}{25}$$
$$\Rightarrow \quad \sum x_i^2 = \frac{770}{25} \times 5 = 154$$
$$5^{\text{th}} \text{ observation } = 24 - \frac{7}{2} \times 4 = 10$$
$$\text{New variance } = \frac{\sum_{i=1}^{4} x_i^2}{4} - \left(\frac{7}{2}\right)^2$$
$$= \frac{154 - 100}{4} - \frac{49}{4}$$
$$= \frac{5}{4}$$

11.			
12.			
13.			
14.			
15.			
16.			
17.			
18.			
19.			
20.			

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The remainder when $64^{32^{32}}$ is divided by 9 is

Answer (1)

Sol. $64 \equiv 1 \pmod{9}$

 $64^{32^{32}} \equiv 1^{32^{32}} \pmod{9}$

- \Rightarrow Remainder = 1
- 22. Area bounded by $0 \le y \le \min \{x^2 + 2, 2x + 2\}, x \in [0, 3]$ is *A*, then 12 *A* is

Answer (164)

Sol. min{
$$x^2 + 2$$
, $2x + 2$ } $\begin{cases} x^2 + 2 & 0 \le x \le 2\\ 2x + 2 & 2 \le x \le 3 \end{cases}$

ARE (2, 6)
(2, 6)
3
Area =
$$A = \frac{2}{1}(x^2 + 2)dx + \frac{1}{2}[6 + 8] \times 1$$

Area =
$$A = \int_{0}^{1} (x^{2} + 2) dx + \frac{1}{2} [6 + 8]$$

= $\frac{x^{3}}{3} + 2x \Big]_{0}^{2} + 7$

$$\frac{8}{3} + 4 + 7 = \left(\frac{8}{3} + 11\right)$$
 unit
12A = 12 $\left(\frac{8}{3} + 11\right) = 164$

23. The number of ways to distribute 8 identical books into 4 distinct bookshelf is (where any bookshelf can be empty)

Answer (165)

Sol.
$$x_1 + x_2 + x_3 + x_4 = 8$$

Number of ways =
$$\begin{pmatrix} 8+4-1\\ 4-1 \end{pmatrix}$$

$$= \begin{pmatrix} 11\\3 \end{pmatrix}$$
$$= 165$$

$$\frac{1-x^2}{1+x^2}$$
 then value of $225(f'(x) - f''(x))$

at
$$x = \frac{1}{2}$$

24. If $f(x) = \ln x$

Sol.
$$f(x) = \ln(1 - x^2) - \ln(1 + x^2)$$

$$f'(x) = \frac{-2x}{1-x^2} - \frac{2x}{1+x^2}$$
$$= -2x \left[\frac{2}{1-x^4} \right]$$
$$f'(x) = \frac{4x}{x^4 - 1}$$
$$f''(x) = 4 \left[\frac{\left(x^4 - 1 \right) - 4x^4}{\left(x^4 - 1 \right)^2} \right]$$

$$=4\left\lfloor\frac{-3x^4-1}{\left(x^4-1\right)^2}\right\rfloor$$

$$f'(x) - f''(x) = 4 \left[\frac{x}{x^4 - 1} + \frac{3x^4 + 1}{(x^4 - 1)^2} \right]$$

At
$$x = \frac{1}{2}$$

225 $[f'(x) - f''(x)] = 736$

EXAMPLE 1
25.
$$\frac{3\cos 2x + \cos^{3} 2x}{\cos^{6} x - \sin^{6} x} = x^{3} - x^{2} + 6, \text{ then find sum of roots,}} = x^{3} - x^{2} + 6, \text{ then find sum of roots,}}$$
Answer (1)
Sol. ::

$$\frac{\cos 2x(3 + \cos^{2} 2x)}{(\cos^{2} x - \sin^{2} x)[\sin^{4} x + \cos^{4} x + \sin^{2} x \cos^{2} x]}, \cos^{2} x - \sin^{2} x)[\sin^{4} x + \cos^{4} x + \sin^{2} x \cos^{2} x], \cos^{2} x - \sin^{2} x \cos^{2} x] = 4$$

$$\Rightarrow x^{3} - x^{2} + 6 = 4$$

$$\Rightarrow x^{3} - x^{2} + 6 = 4$$

$$\Rightarrow x^{3} - x^{2} + 2 = 0$$

$$\therefore \text{ therefore sum of roots = 1}$$
26.
$$x\left(\cos\left(\frac{y}{x}\right)\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$$
where $\sin\left(\frac{y}{x}\right) = \ln |x| + \frac{\alpha}{2}$ and $f(1) = \frac{\pi}{3}$
Find α^{2} .
Answer (3)
Sol. ::
$$\left(\cos\frac{y}{x}\right)\frac{dy}{dx} = \frac{y}{x}\cos\frac{y}{x} + 1$$
Putting $y = vx$

$$\Rightarrow \frac{dy}{dx} = x\frac{dy}{dx} + v$$

$$\Rightarrow \cos v\left(x\frac{dv}{dx} + v\right) = v\cos v + 1$$
Auguare 1

JEE | NEET | Class 9 - 12 Download App Now

 $c = \frac{\alpha}{2}$ I condition, =α /3 $\overrightarrow{\mathsf{DC}} = \overrightarrow{\mathsf{b}}$, and area of $\triangle \mathsf{OAC}$ is S and a m with sides parallel to \overrightarrow{OA} and \overrightarrow{OC} al $\overrightarrow{OB} = 12\overrightarrow{a} + 4\overrightarrow{b}$, has area equal to *B*, qual to

Sol.
$$S = \frac{1}{2} |\vec{a} \times \vec{b}|$$

 $B = |12\vec{a} \times 4\vec{b}|$
 $\Rightarrow \frac{B}{S} = \frac{48 |\vec{a} \times \vec{b}|}{\frac{1}{2} |\vec{a} \times \vec{b}|} = 96$
28.
29.

Give yourself an extra edge