

## JEE Main 01 Feb 2024 (Shift-1) (Memory Based)

The Actual Paper will be Updated with Solution After the Official Release

### JEE Main 1 Feb 2024 (Shift-1) (Memory Based)

### PART: PHYSICS

- 1. Determine minimum energy released in balmer series of hydrogen atom.
  - (1) 3.4 ev
- (2) 12.09 ev
- (3) 1.89 ev
- (4) 10.2 ev

(2)Ans.

For minimum energy Sol.

For minimum energy

$$\Delta E_{min} = 1.89 \, V$$

- Current flowing in a conductor in given as  $I = 3t^2 + 4t^3$ , then charge flown through the cross section of 2. conductor from t = 1 sec to t = 2sec will be-
  - (1) 10 C
- (2) 11 C
- (3) 22 C

Ans. (3)

**Sol.** 
$$I = \frac{dQ}{dt} = 3t^2 + 4t^3$$

$$\int dQ = \int_{1}^{2} \left(3t^2 + 4t^3\right) dt$$

$$I = \frac{dQ}{dt} = 3t^{2} + 4t^{3}$$

$$\int dQ = \int_{1}^{2} (3t^{2} + 4t^{3}) dt$$

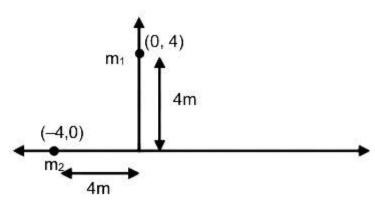
$$Q = \frac{3t^{3}}{3} + \frac{4t^{4}}{4} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = (t^{3} + t^{4}) \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

$$= (8+16) - (1+1) = 24 - 2 = 22 C$$

- 3. Two moles of monoatomic gas and 6 moles of diatomic gas are mixed. Find molar heat capacity for the mixture at constant volume.
  - $(1) \frac{7}{2} R$
- $(2) \frac{11}{2} R$
- (3)  $\frac{13}{2}$ R
- $(4) \frac{9}{4} R$

Ans.

**Sol.** 
$$C_{v \text{ mix}} = C_{V_{\text{mix}}} = \frac{n_1 C_{V_1} + n_2 C_{V_2}}{n_1 + n_2}$$


$$n_1 = 2$$
,  $C_{v1} = \frac{3R}{2}$  (monoatomic)

$$n_2 = 6$$
,  $C_{v2} = \frac{5R}{2}$  (Diatomic)

$$c_{v \, \text{mix}} = \frac{2 \times \frac{3R}{2} + 6 \times \frac{5R}{2}}{8} = \frac{3R + 15R}{8} = \frac{18R}{8} = \frac{9}{4}R$$

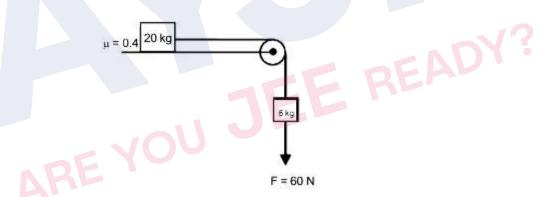
Two particle each of mass 2 kg are places as shown in x-y plane, if the distance of centre of mass from 4.

origin is  $\frac{4\sqrt{2}}{x}$ . Find x.



- (1)4
- (2)2
- (3)6
- (4) 3

Ans. (2)


**Sol.** 
$$\dot{r_{cm}} = \frac{m_1 \dot{r_1} + m_2 \dot{r_2}}{m_1 + m_2} = \frac{2(-4\hat{i}) + 2(4\hat{j})}{2 + 2}$$

$$\dot{r_{cm}} = -2\hat{i} + 2\hat{j}$$

$$|\dot{r}| = \sqrt{(-2)^2 + (2)^2} = 2\sqrt{2} = \frac{4\sqrt{2}}{2}$$

$$x = 2$$

Find acceleration of the system if an external force of 60 N is applied on 6 kg block 5.



- $(1) \frac{20}{13} \text{ m/s}^2$
- (2) 5 m/s<sup>2</sup>
- (3)  $\frac{30}{17}$  ms<sup>2</sup> (4)  $\frac{10}{6}$  m/s<sup>2</sup>

Ans.

Sol. 
$$a = \frac{\text{Net force along string}}{\text{total mass}}$$

$$a = \frac{60 + (6 \times 10) - (20 \times 10) \times 0.4}{20 + 6}$$

$$a = \frac{20}{13} \,\text{m/s}^2$$

### www.eedge.in

- 6. Dimension of angular impulse is
  - (1)  $M^1L^2T^{-1}$
- (2) M<sup>1</sup>L<sup>2</sup>T<sup>1</sup>
- (3)  $M^{-1}L^{-2}T^{-1}$
- (4) M<sup>1</sup>L<sup>2</sup>T<sup>1</sup>

- Ans. (1)
- Sol.  $L = mvr = [MLT^{-1}L] = [ML^2T^{-1}]$
- 7. Radius of a nucleus of mass number 64 is 4.8 Fermi. Find atomic mass number of nucleus of radius 4 Fermi.
  - (1)48
- (2)37
- (3)54
- (4) 32

- (2) Ans.
- Sol. Density of nucleus is constant

$$\therefore \frac{\text{mass}}{\text{volume}} = \frac{\text{Atomic number}}{\text{R}^3} = \text{constant}$$

$$\therefore \ \frac{A_1}{R_1^3} = \frac{A_2}{R_2^3}$$

$$\Rightarrow \qquad A_2 = \left(\frac{R_2}{R_1}\right)^3 A_1$$

$$\Rightarrow A_2 = \left(\frac{4}{4.8}\right)^3 64$$

- $A_2 = 37$
- 8. Statement 1: Value of Young's modulus increase on increasing temperature.

Statement 2: Value of Young's modulus decreases on increasing temperature.

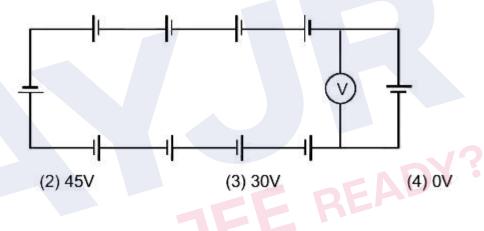
- (1) Statement -I is true, Statement -II is true
- (2) Statement –I is true, Statement –II is False
- (3) Statement –I is false, Statement –II is true
- (4) Statement –I is False, Statement –II is False
- Ans. (3)
- Sol. Statement-I is false, Statement-II is true
- 9. If de-broglie wavelength of proton is  $\lambda$  and of alpha particle is  $2\lambda$ . Find the ratio of their speeds.
  - (1) 1 : 4
- (2) 4:1
- (3)8:1
- (4)2:3

- Ans.
- (3)

Sol. 
$$\lambda = \frac{h}{p}$$

$$p = \frac{h}{\lambda}$$

$$\Rightarrow$$
 mv =  $\frac{h}{\lambda}$ 


$$\Rightarrow$$
 v =  $\frac{h}{m\lambda}$ 

$$\Rightarrow \frac{v_p}{v_\alpha} = \frac{m_\alpha}{m_p} \cdot \frac{\lambda_\alpha}{\lambda_p}$$

$$\Rightarrow \frac{v_p}{v_\alpha} = \frac{4m}{m} \frac{2\lambda}{\lambda}$$

$$\Rightarrow \frac{v_p}{v_\alpha} = 8$$

All batteries are identical (5v,  $0.2\Omega$ ) and connected red as shown in the figure. Find the reading of 10. voltmeter.



(1) 40 V

(4) Ans.

Sol.

$$5 \times 9 = 45V$$

$$r = 0.2 \times 9 = 1.8\Omega$$
 $0.2\Omega$ 

$$V = \frac{E_2 r_1 - E_1 r_2}{r_1 + r_2}$$

$$V = \frac{5 \times 1.8 - 45 \times 0.2}{1.8 + 0.2}$$

$$V=0$$

- A gas undergoes a thermodynamic process from state (P1, V1, T1), to state (P2V2T2) For the given 11. process  $Pv^{\frac{3}{2}}$  = constant find the work done by the gas

- $(1) \frac{P_2V_2 P_1V_1}{2} \qquad (2) \frac{P_1V_1 P_2V_2}{2} \qquad (3) 2(P_1V_1 P_2V_2) \qquad (4) \frac{3(P_1V_1 P_2V_2)}{2}$
- Ans.
- $PV^{\frac{3}{2}} = c$ Sol.

Work done = 
$$\frac{P_2V_2 - P_1V_1}{1 - x} = \frac{P_2V_2 - P_1V_1}{1 - \frac{3}{2}} = 2(P_1V_1 - P_2V_2)$$

- 12. Find focal length of a convex lens if image is 3 times virtually magnified. Distance between object & image is 20 cm
  - (1) 8 cm
- (2) 15 cm
- (3) 10 cm
- (4) 20 cm

- Ans. (2)
- $m = \frac{v}{11} = 3$ Sol.

v=3u

v-u=20 cm

2u =20 cm ⇒ u=10 cm

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

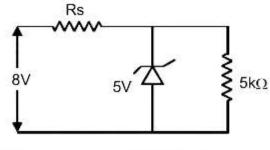
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
 =  $-\frac{1}{3u} = \frac{1}{v} - \frac{2}{3u}$ 

$$f = \frac{3(10)}{2} = 15 \text{ cm}$$

- Position of a particle moving along x-axis is given by  $x = 6t^3 t^2 t$ , Find the speed of the particle when 13. its acceleration becomes zero.
  - (1)  $-\frac{17}{18}$  m/s (2)  $\frac{19}{18}$  m/s (3)  $-\frac{19}{18}$  m/s (4)  $\frac{17}{18}$  m/s

EE READY?

- Ans. (3)
- $x = 6t^3 t^2 t$ Sol.

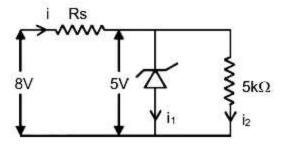

$$v = 18 t^2 - 2t - 1$$

$$a = 36 t - 2 = 0$$

$$t = \frac{1}{18}$$
,  $v = 18 \times \frac{1}{18} \times \frac{1}{18} - 2 \times \frac{1}{18} - 1$ 

$$v = -\frac{19}{18} \text{ m/s}$$

14. Power in zenor diode is 20mW Find value of resistance Rs.




- $(1)600 \Omega$
- (2)  $6000 \Omega$
- (3) 300  $\Omega$
- (4) 3000  $\Omega$

Ans.

(1)

Sol.

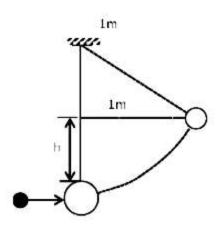


$$i = i_1 + i_2 = \frac{P_1}{V_1} + \frac{V_2}{5k\Omega}$$

$$i = \frac{20}{5} \text{mA} + \frac{5}{5} \text{mA}$$

i = 5mA

$$\therefore Rs = \frac{(8-5)}{5} \times 1000\Omega = 600\Omega$$


$$Rs = 600\Omega$$

15. A bullet of mass  $10^{-2}$  Kg moving with speed  $2 \times 10^2$  m/s hits a ballistic pendulum of length 1m and mass 1 Kg horizontally and gets embedded in it. Find the maximum height achieved by the system. (g =  $9.8 \text{ m/s}^2$ )

- (1) 0.48 m
- (2) 0.196 m
- (3) 0.98 m
- (4) 1 m

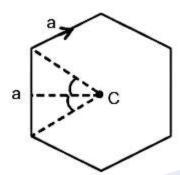
Ans. (2)

Sol.



COLM (conservation & linear momentum)

$$10^{-2} \times 2 \times 10^{2} = (1 + 10^{-2}) \text{ V}$$


$$\Rightarrow$$
 V ≈ 2 m/s

By COE

$$\frac{1}{2}$$
 mv<sup>2</sup>=mgh

$$h = \frac{v^2}{2a} = 0.2 \text{ m}$$

16. Find the magnetic field at the center of current carrying regular hexagon wire of side length á' and currenti.



(1) 
$$\frac{\mu_0 i}{\sqrt{3}\pi a}$$

(2) 
$$\frac{\sqrt{3} \mu_0 i}{2\pi a}$$

(3) 
$$\frac{\sqrt{3} \mu_0}{4\pi a}$$

$$(4) \frac{\sqrt{3} \mu_0 i}{\pi a}$$

Ans. (4)

$$=\frac{\sqrt{3}\,a}{2}$$



$$B_c = 6 \times \frac{\mu_0 i}{4\pi \left(\frac{\sqrt{3}a}{2}\right)} \text{ (sin 30° + sin 30°)}$$

$$= 6 \times \frac{\mu_0 i}{4\pi \frac{\sqrt{3}}{2} a} = 6 \times \frac{\mu_0 i}{4\pi \frac{\sqrt{3}}{2} a} \left(2 \times \frac{1}{2}\right)$$

$$B_c = \frac{\sqrt{3} \ \mu_0 i}{\pi a}$$

- 17. The length of a seconds pendulum if it is placed at a distance 2R from the surface of earth (R = Radius of earth) is  $\frac{10}{x\pi^2}$  m . Find x.
  - (1) 10
- (2)9
- (3) 12
- (4)8

Ans. (2)

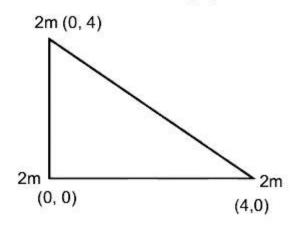
- $T = 2\pi \sqrt{\frac{\ell}{\alpha}}$ Sol.
  - $g = \frac{GM}{R^2}$
  - $g' = \frac{GM}{(R+2R)^2} = \frac{g}{9}$
  - $T = 2\pi \sqrt{\frac{\ell}{q}} \Rightarrow 2 = 2\pi \sqrt{\frac{\ell}{q/9}} \Rightarrow \frac{1}{\pi^2} = \frac{9\ell}{q}$
  - $\ell = \frac{g}{9\pi^2} = \frac{10}{9\pi^2}$
  - x = 9
- Two identical charged particles of mass density 1.5 g/cm<sup>2</sup> are connected by individual strings of equal 18. length from a common point and the system is placed in air. If angle between the strings does not change ∴  $\frac{Fe}{\rho Vg} = \frac{Fe'}{(\rho - \rho_w)Vg}$ ⇒  $\frac{Fe}{\rho Vg} = \frac{Fe}{(\rho - \rho_w)Vg}$ when dipped in water. Find the dielectric constant of water.

Ans.

Sol.

$$\therefore \frac{\text{Fe}}{\rho \text{Vg}} = \frac{\text{Fe'}}{(\rho - \rho_w) \text{Vg}}$$

- $\Rightarrow \frac{\text{Fe}}{(1.5)} = \frac{\text{Fe}}{\text{K}(1.5-1)}$
- ⇒ K = 3
- 19. Value of capacitance is changed from C to 4C in an LC circuit. Find the value of new inductance if original induction was L. Resonance frequency remain same.
  - $(1) \frac{L}{4}$
- (2) 4L
- (3)  $\frac{L}{2}$
- (4) 2L


Ans. (1) **Sol.**  $W_r = \frac{1}{\sqrt{LC}} = Constant$ 

LC = Constant

If 
$$C \rightarrow 4C$$

Then 
$$L \rightarrow \frac{L}{4}$$

20. Find the coordinates of centre of mass of following system



- $(1)\left(\frac{1}{2},\frac{4}{3}\right)$
- $(2)\left(\frac{4}{3},\frac{4}{3}\right)$
- $(3)\left(\frac{4}{3},\frac{5}{3}\right)$
- $(4)\left(\frac{2}{3},\frac{2}{3}\right)$

Ans. (2)

Sol. 
$$X_{com} = \frac{(2m).0 + (2m)(4) + (2m)(0)}{2m + 2m + 2m}$$

$$=\frac{8m}{6m}=\frac{4}{3}$$

$$Y_{com} = \frac{2m.0 + 2m.0 + 2m.4}{6m} = \frac{8m}{6m} = \frac{4}{3}$$

at com 
$$\left(\frac{4}{3}, \frac{4}{3}\right)$$
 Ans.

21. A particle is performing horizontal circular motion of radius R with constant speed V. Its time period is T. Another particle is projected with same speed at an angle  $\theta$  such that its maximum height is 2R. Find the value of  $\theta$ . (g =  $\pi^2$ )

$$(1) \frac{1}{2} \cos^{-1} \left( 1 - \frac{T^2}{R} \right)$$

(2) 
$$\frac{1}{2}\sin^{-1}\left(1-\frac{T^2}{R}\right)$$

JEE READY?

(3) 
$$\frac{1}{2} \sin^{-1} \left( 1 - \frac{2T^2}{R} \right)$$

(4) 
$$\frac{1}{2}\cos^{-1}\left(1-\frac{2T^2}{R}\right)$$

Ans. (4)

Sol. 
$$T = \frac{2\pi R}{v} \Rightarrow v = \frac{2\pi R}{T}$$

$$h_{\text{projectile}} = \frac{v^2 \sin^2 \theta}{2g}$$

$$2R = \left(\frac{2\pi R}{T}\right)^2 \frac{\sin^2 \theta}{2g} = \frac{4\pi^2 R^2}{2gT^2} \sin^2 \theta$$

$$\sin^2\theta = \frac{gT^2}{\pi^2R}$$

$$\sin^2\theta = \frac{T^2}{R}$$

$$=\frac{1-\cos 2\theta}{2}=\frac{\mathsf{T}^2}{\mathsf{R}}$$

$$\cos 2\theta = 1 - \frac{2T^2}{R}$$

$$\theta = \frac{1}{2}\cos^{-1}\left(1 - \frac{2T^2}{R}\right)$$

- A vernier calipers device has 10 main scale divisions coinciding with 11 vernier scale divisions each 22. equals 5 mm. The least count of the is:
  - $(1) \frac{1}{2}$ mm
- $(2) \frac{1}{22} mm$
- (3)  $\frac{5}{11}$ mm
- (4) 0.3 mm

Ans.

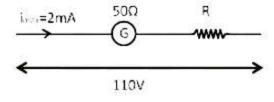
**Sol.** 1 M.S = 
$$\frac{5}{10}$$
 mm

1 V.S = 
$$\frac{5}{11}$$
 mm

L.C. = 
$$\frac{5}{10} - \frac{5}{11}$$
 mm

$$L.C.=5\left(\frac{1}{10\times11}\right)$$

L.C.= 
$$\frac{1}{22}$$
mm


- Resistance of a galvanometer is 50 Ω and full scale deflection current in galvanometer is 2 mA. To design 23. a volt meter of range 110 V, find the resistance to be connected in series with the galvanometer.
  - (1) 25 K $\Omega$
- (2) 50 K $\Omega$
- (3) 55 K $\Omega$

EYOU JEE READY?

(4) 60 K $\Omega$ 

- Ans.
- (3)

Sol.



$$i_{max}(R+50) = 110$$

$$\Rightarrow$$
 R+50 =  $\frac{110}{2 \times 10^{-3}}$ 

$$\Rightarrow R \, \approx \, 55 \, K\Omega$$

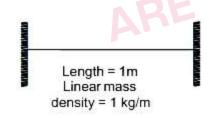
24. In single slit diffraction wavelength of light used is  $\lambda = 6000 \text{A}^{\circ}$ 

If Slit width is 0.1 mm and convex lens of focal length 20 cm is used to collect the diffracted light.

Then find the width of central maxima.

Ans. (3)

**Sol.** width = 
$$2\frac{f\lambda}{d}$$


$$=2\frac{0.2\times6000\times10^{-10}}{0.1\times10^{-3}}=\frac{2.4\times10^{-7}}{10^{-4}}$$

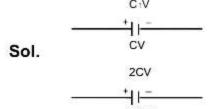
Width = 
$$2.4 \times 10^{-3}$$
 = 2.4 mm

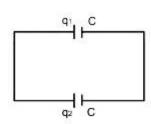
- 25. Two strings each of length 1 m and linear mass density 1 kg/m are fixed at both ends with tension 6 N in each string. If the tension in one string is changed from 6 N to 52 N, then find the beat frequency. (Both the strings vibrating in fundamental mode)
  - (1) 2.35 Hz
- (2) 3.25 Hz
- (3) 2.75 Hz
- (4) 5.25 Hz

Ans. (1)

Sol.




$$f = \frac{1}{2} \sqrt{\frac{T}{\mu}} = \frac{1}{2(1)} \sqrt{\frac{T}{1}} = \frac{\sqrt{T}}{2}$$


$$f_b = f_1 - f_2 = \frac{\sqrt{T_1}}{2} - \frac{\sqrt{T_2}}{2}$$

$$=\frac{1}{2}\left[\sqrt{52}-\sqrt{6}\right]=\frac{7.2-2.5}{2}=\frac{4.7}{2}=2.35 \text{ Hz}$$

- 26. Two capacitor of same capacitance (C) are charged with potential difference V and 2V respectively If these two are connected in such a way that positive terminal of one connected with positive terminal of other and same for negative terminal then find energy loss.
  - $(1) \frac{1}{2} CV^2$
- (2)  $\frac{3}{2}$ CV<sup>2</sup>
- (3)  $\frac{1}{4}$  CV<sup>2</sup>
- $(4) \frac{3}{4} \text{CV}^2$

Ans. (3)





$$\frac{q_1}{c} = \frac{q_2}{c} \quad \Rightarrow \quad q_1 = q_2 = \frac{CV + 2CV}{2} = \frac{3}{2}CV$$

Energy loss 
$$\Delta E = \frac{\Delta q_1^2}{2C} + \frac{\Delta q_2^2}{2C}$$

$$\Delta E = \frac{\left(CV - \frac{3}{2}Cv\right)^2}{2C} + \frac{\left(2CV - \frac{3}{2}Cv\right)^2}{2C}$$

$$\Delta E = \frac{1}{8}CV^2 + \frac{1}{8}Cv^2$$

$$\Delta E = \frac{1}{4}CV^2$$

27. For measuring resistivity, the relation R =  $\frac{\rho \ell}{A} = \frac{\rho \ell}{\pi r^2}$  is used. The percentage error in resistance (R), in

length ( $\ell$ ) and in radius (r) are given x, y and z respectively. Find percentage error in resistivity  $\rho$ .

$$(1) x + 2y + z$$

$$(2) 2x + y + z$$

$$(3) x + y + 2z$$

$$(4) x + 2z - y$$

Ans. (3

Sol. 
$$R = \frac{\rho \ell}{\pi r^2}$$

$$\rho = \frac{\pi r^2 R}{\ell}$$

$$\frac{\Delta \rho}{\rho} \times 100\% = \left(\frac{2\Delta r}{r} \times 100 + \frac{\Delta R}{R} \times 100 + \frac{\Delta \ell}{\ell} \times 100\right)\%$$

$$\frac{\Delta \rho}{\rho} \times 100\% = 2z + x + y$$

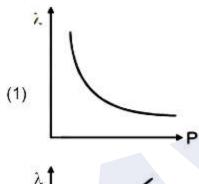
# PART : CHEMISTRY

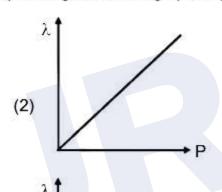
- 1. Which of the following is correct for adiabatic free expansion?
  - (1) q = 0,  $\Delta U = 0$ , w = 0

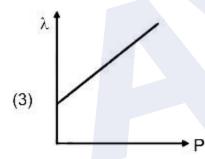
(2) 
$$q \neq 0$$
,  $w = 0$ ,  $\Delta U = 0$ 

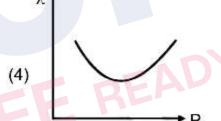
(3) 
$$q = 0$$
,  $\Delta U \neq 0$ ,  $w = 0$ 

(4) 
$$q = 0$$
,  $\Delta U \neq 0$ ,  $w \neq 0$ 


Ans. (1)


Sol. Adiabatic free expansion against vacuum


$$q = 0$$
,  $P_{ext} = 0$ ,  $w = 0$ 


$$\Delta U = q + w = 0 + 0 = 0$$

2. Which of the following is correct plot between  $\lambda$  (de-Broglie wavelength) and p (momentum) ?









Ans. (1)

- Sol.
- 3. Among the following homoleptic complex is
  - (1) [Ni(CN)<sub>4</sub>]-2
- (2) [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]
- (3) [RhCl(PPh<sub>3</sub>)<sub>3</sub>]
- (4) [Co(en)2Cl]+2

Ans. (1)

- Sol. In homoleptic complex only one type of ligand (same ligand) is present
- 4. Among the following, which is redox disproportionation reaction?
  - (1)  $Cu^+aq \longrightarrow Cu(s) + Cu^{+2}aq$
- $(2) I + IO_3 + H^+ \longrightarrow I_2$
- (3) KMnO<sub>4</sub>  $\stackrel{\Delta}{\longrightarrow}$  K<sub>2</sub>MnO<sub>4</sub> + MnO<sub>2</sub> + O<sub>2</sub> (4) AgNO<sub>3</sub> (aq) + NaCl (aq)  $\longrightarrow$  AgCl  $\downarrow$  + NaNO<sub>3</sub> (aq)

(1) Ans.

In redox disproportionation reaction same element of same substance get oxidised as well as reduced Sol.

5. We are given with three NaCl samples and their Van't Hoff factor.

#### Van't Hoff factor Sample of NaCl

1. 0.1 M 11 2. 0.01 M 12

3. 0.001 M

(2)  $i_1 > i_2 > i_3$  (3)  $i_3 > i_2 > i_1$  (4)  $i_1 > i_3 > i_2$  $(1) i_1 = i_2 = i_3$ 

Ans. (1)

Sol. NaCl ---- Na+ + Cl- $I = 1 + (n - 1) \alpha = 1 + (2 - 1) \times 1 = 2$ 

 $i_1 = i_2 = i_3 = 2$ 

 $Cr_2O_7^2 + X H^+ + Ye^- \longrightarrow 2Cr^{3+} + AH_2O$  Balance the above reaction and find X, Y and A 6.

(1) X = 7, Y = 6, A = 14

(2) X = 14, Y = 6, A = 7

(3) X = 14, Y = 3, A = 7

(4) X = 8, Y = 2, A = 1

Ans. (2)

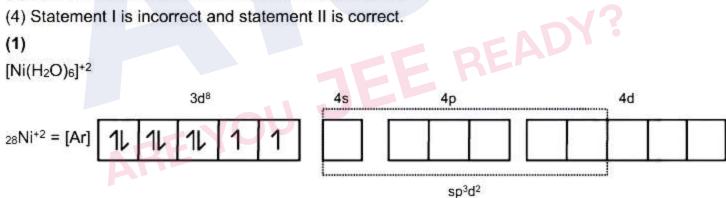
 $Cr_2O_7^2 + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ Sol.

Statement-I: Solution of [Ni(H2O)6]+2 is green in colour. 7.

Statement-II: Solution [Ni(CN)4]-2 is colourless

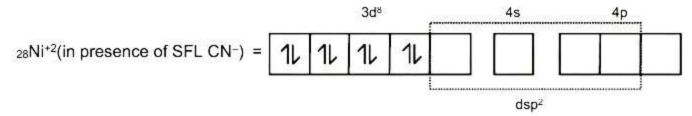
Options

Both statements are correct.


(2) Both Statements are incorrect.

(3) Statement I is correct and statement II is incorrect.

(4) Statement I is incorrect and statement II is correct.


Ans. (1)

Sol. [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>+2</sup>



n = 2 (unpaired e-s), paramagnetic, green

[Ni(CN)<sub>4</sub>]-2



n = 0, diamagntic, colourless

#### www.eedge.in

Statement-I: Boiling point of NH<sub>3</sub> is greater than PH<sub>3</sub>

Statement-II: In PH3 H-bond is present whereas in NH3 only vander Waal force is present.

- (1) Both statements are correct.
- (2) Both Statements are incorrect.
- (3) Statement I is correct and statement II is incorrect.
- (4) Statement I is incorrect and statement II is correct.
- Ans. (3)
- Sol. BP order NH<sub>3</sub> > PH<sub>3</sub>

Reason --- In NH3 H-bond is present

9. Select the correct order of ionic character of given species :

SO<sub>2</sub>, N<sub>2</sub>, CIF<sub>3</sub>, K<sub>2</sub>O, and LiF

(1) LiF >  $K_2O$  >  $CIF_3$  >  $SO_2$  >  $N_2$ 

(2) LiF > CIF<sub>3</sub> >  $K_2O$  >  $SO_2$  >  $N_2$ 

(3) LiF >  $K_2O$  >  $SO_2$  >  $CIF_3$  >  $N_2$ 

(4) K2O > LiF > CIF3 > N2 > SO2

Ans. (1)

Sol. On the basis of electronegative difference.

In case of isoelectronic species F-, Ne and Na+ the size is affected by

(1) Principal quantum number

(2) electron-electron interaction

(3) Nuclear charge (z)

(4) None of these

Ans. (3)

Sol. For isoelectronic species (10 e<sup>-</sup>) Z ↑ r ↓

In Kjeldahl's method for estimation of nitrogen, CuSO<sub>4</sub> acts as:

(1) Oxidising agent

(2) Reducing agent

(3) Catalytic agent

(4) Hydrolysis agent

Ans. (3)

Sol. It is fact.

12. Complementary strand of the DNA sequence, ATGCTTCA is :

(1) TACGAAGA

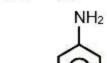
(2) TACGAAGT

(3) TAGCAACA

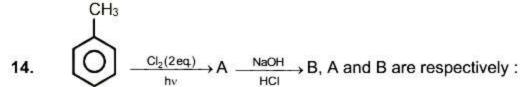
(4) TAGCTACT

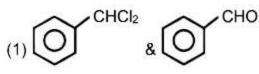
Ans. (2)

13. Statement-I: Aniline & Aminobenzene both are same compound.


Statement-II: Aniline & Aminobenzene both are different compound.

In the light of the above statement choose the most appropriate answer from the option given below.


- (1) Statement-I is incorrect & Statement-II is correct.
- (2) Statement-I is correct & Statement-II is incorrect.
- (3) Both Statements I & II are incorrect.
- (4) Both Statements I & II are correct.


Ans. (2)

Sol.



Aniline is systematic name, where as Aminobenzene is strict IUPAC name.





Ans. (1)

Sol. 
$$CH_3$$

$$CHCl_2$$

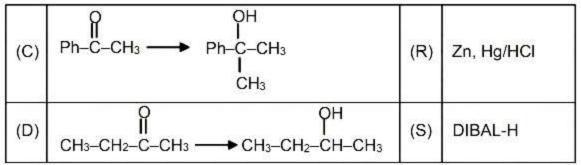
$$NaOH$$

$$HCl$$

$$NaOH$$

$$HCl$$

15. The correct order of reactivity of the given compounds toward electrophilic aromatic substitution reaction is -




Ans. (1)

Sol. Greater the e-density on benzene ring, faster the rate of EAS reaction.

16. Correct matching for reaction given in column-I with reagent given in column-II:

|     | Column-I                                                                                                                 |     | Column-II            |
|-----|--------------------------------------------------------------------------------------------------------------------------|-----|----------------------|
| (A) | Ph-COOH> Ph-CH₂-Ph                                                                                                       | (P) | CH <sub>3</sub> MgBr |
| (B) | CH <sub>3</sub><br>(CH <sub>3</sub> ) <sub>3</sub> COOCH <sub>3</sub> → CH <sub>3</sub> –C–CHO<br> <br>  CH <sub>3</sub> | (Q) | NaBH <sub>4</sub>    |



- (1) A R, B S, C P, D Q
- (2) A S, B R, C Q, D P
- (3) A Q, B S, C P, D Q
- (4) A S, B Q, C R, D P

Ans. (1)

17. Statement-I: -NH2 is strong activating group.

Statement-II: Aniline does not gives Friedel Craft acylation or alkylation reaction.

- (1) Statement-I is incorrect & Statement-II is correct.
- (2) Statement-I is correct & Statement-II is incorrect.
- (3) Both Statements I & II are incorrect.
- (4) Both Statements I & II are correct.

Ans. (4)

- Sol. -NH<sub>2</sub> is strong activating group due to +M effect and aniline does not give Friedel craft acylation or alkylation as it consumes the catalyst AlCl<sub>3</sub>.
- 18. For ionic reaction in organic compound, which type of bond cleavage occur.
  - (1) Heterolytic cleavage

(2) Homolytic cleavage

(3) Free radical formation

(4) No cleavage of bond age.

Ans. (1)

- Sol. lonic reaction proceed via heterolytic bond cleavage.
- 19. What is the pH of CH<sub>3</sub>COO<sup>-</sup>NH<sub>4</sub> (at 25°C)? Given  $K_a$  of CH<sub>3</sub>COOH =  $1.8 \times 10^{-5}$  and  $K_b$  of NH<sub>4</sub>OH =  $1.8 \times 10^{-5}$

Ans. (7)

Sol. WABA salt :  $pH = \frac{1}{2} (PK_w + PK_a - PK_b)$ 

$$pH = \frac{1}{2} (14 + 4.74 - 4.74) = 7$$

**20.** How many of the following are amphoteric in nature?

SnO<sub>2</sub>, PbO<sub>2</sub>, S<sub>1</sub>O<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>, Al<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub>, CO, NO, N<sub>2</sub>O, SnO

Ans. (4)

Sol. Amphoteric Oxides: SnO2, PbO2, Al2O3, SnO

Acidic Oxides: S<sub>1</sub>O<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>, CO<sub>2</sub> Neutral Oxides: CO, NO, N<sub>2</sub>O

 $3PbCl_2 + 2(NH_4)_3 PO_4 \longrightarrow Pb_3(PO_4)_2 + 6NH_4CI$ 21.

> 72 mmol 50 mmol

Find mili mole of Pb3 (PO4)2 produced.

Ans. (24)

 $3PbCl_2 + 2(NH_4)_3 PO_4 \longrightarrow Pb_3(PO_4)_2 + 6NH_4CI$ Sol.

$$\frac{n \operatorname{PbCl}_2}{3} = \frac{n \operatorname{Pb}_3(\operatorname{PO}_4)_2}{1}$$

$$nPb_3(PO_4)_2 = \frac{72}{3} = 24 \text{ mmol}$$

22. For the reaction

$$2H^+(aq) + 2e^- \longrightarrow H_2(g)$$

If [H<sup>+</sup>] = 1M &  $P_{H_2}(g) = 2$  bar, if  $E_{cell}$  is  $-x \times 10^{-3}$  V, then determine value of x.

Ans.

Sol. 
$$E_{cell} = E_{cell}^0 - \frac{0.0591}{2} log \frac{P_{H_2}(g)}{[H^+]^2}$$

$$= -\frac{0.0591}{2} \log \frac{2 \text{ bar}}{(1)^2}$$

$$\approx -\frac{0.06}{2} \times 0.3$$

$$\approx -0.009 \approx -9 \times 10^{-3}$$

23. Radius of nucleus is 4.8 fermi meter and mass number is 64. Find mass number of nucleus in terms of

A, when radius is 4 fermi meter. Report your answer for x.

Ans.

R = R<sub>0</sub> A<sup>1/3</sup> Sol.

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$$

$$\frac{4.8}{4} = \left(\frac{64}{A_2}\right)^{1/3}$$

$$(1.2) = \frac{4}{(A_2)^{1/3}}, (A_2)^{1/3} = \frac{4}{1.2}$$

$$A_2 = \left(\frac{10}{3}\right)^3 = \frac{1000}{27} = \frac{A}{x}$$

$$x = 27$$

#### www.eedge.in

24. How many of the following are trigonal bipyramidal?

PCIs, [Fe(CO)s], BF3, BrFs, AIF4-, PFs

Ans. (3)

Sol. PCI<sub>5</sub>, PF<sub>5</sub>, sp<sup>3</sup>d, 5BP + 0LP, trigonal bipyramidal

[Fe(CO)<sub>5</sub>] {dsp<sup>3</sup>, trigonal bipyramidal}

BrF<sub>5</sub> {sp<sup>3</sup>d<sup>2</sup>, 5BP + 1LP square pyramidal}

AIF<sub>4</sub>-{sp<sup>3</sup>, 4BP + 0LP tetrahedral}

25. For A<sub>2</sub>B lowest oxidation state of one element is –2, find number of valence shell e<sup>-</sup> in B?

Ans. (6)

A21B 2 Sol.

∴ O.N of B = -2

B can accept two electrons to complete their octet in A<sub>2</sub>B

Therefore, no of Valence e- in B = 6

26. Find out Total possible optical isomer of 2-chlorobutane is

Ans. (2)

Sol.

It has only one chiral carbon, hence only two optical isomer is possible.

27. The total no. of deactivating group among the following:

—CN, —NHCOCH<sub>3</sub>, —OCOCH<sub>3</sub>, —COCH<sub>3</sub>, —NHCH<sub>3</sub>, —OCH<sub>3</sub>

(2)
Only –CN, –COCH<sub>3</sub> are deactivating.

Ans.

Sol.

JEE READY?



## PART: MATHEMATICS

1. The value of integral 
$$\int_{0}^{\pi/4} \frac{xdx}{\cos^4 2x + \sin^4 2x}$$
 is

$$(1) \frac{\pi}{16}$$

(2) 
$$\frac{3\pi}{8}$$

(3) 
$$\frac{\pi^2}{16\sqrt{2}}$$

(4) 
$$\frac{\sqrt{3}\pi}{8}$$

Ans. (3)

By property P-6 Sol.

$$\int_{0}^{\pi/8} \left( \frac{x}{\cos^4 2x + \sin^4 2x} + \frac{\frac{\pi}{4} - x}{\sin^4 2x + \cos^4 2x} \right) dx$$

$$\frac{\pi}{4} \frac{1}{2} \int_{0}^{\pi/4} \frac{d\theta}{\sin^4 \theta + \cos^4 \theta} = \frac{\pi}{8} \int_{0}^{1} \frac{1 + t^2}{t^4 + 1} dt,$$

 $t = tan\theta$ 

$$= \frac{\pi}{8} \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right)_0^1 = \frac{\pi^2}{16\sqrt{2}}$$

2. In sequences 3,7,11, ......, 404 and 4, 7, 10, ....., 403, the number of common terms are

Ans. (34)

$$LCM \{4,3\} = 12$$

7, 19, 31, ..... is sequence of common terms

$$t_n = 7 + (n-1)12 \le 403$$

$$12n \le 408$$

3. If 3, a, b, c are in AP and 3, a - 1, b + 1, c + 9 are in GP then AM of a, b, c is

(11)Ans.

$$\frac{a-1}{3} = \frac{b+1}{a-1} = \frac{c+9}{b+1} \dots (3)$$

$$\frac{\frac{b+3}{2}-1}{3} = \frac{b+1}{\frac{b+3}{2}-1} = \frac{2b-a+9}{b+1}$$

$$\frac{b+1}{6} = \frac{(b+1)\times 2}{b+1} = \frac{2b - \frac{b+3}{2} + 9}{b+1}$$

$$\frac{b+1}{6}=2$$

$$2b+2 = \frac{4b-b-3+18}{2}$$

$$4b+4 = 3b+15$$

Now, a = 7, 
$$c = 22 - 7 = 15$$

Now A. M of a, b, c

$$=\frac{a+b+c}{3}=\frac{7+11+15}{3}=11$$

4. If 
$$A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $C = ABA^T$ ,  $X = A^TC^2A$ , then det (X) is equal to

- (1)729
- (2)726
- (3)728
- (4)723

Ans. (1)

Sol. 
$$x = A^{T}ABA^{T}ABA^{T}A$$
  
= (31) 1 (31) 1 (31)= 271  $\Rightarrow$   $|X| = (27)^{2} = 729$ 

The area bounded by xy + 4y = 16 and x + y = 6 is 5.

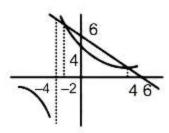
(1) 32 - 42ln3

(2) 42 - 32ℓn2

(3) 30 − 32ℓn2

(4) 33+ 16 ln3

Ans. Sol.


$$\Rightarrow$$
 (x + 4) (6 - x) = 1

(3)  

$$(x + 4) y = 16$$
  
 $\Rightarrow (x + 4) (6 - x) = 16$   
 $6x - x^2 + 24 - 4x - 16 = 0$   
 $-2$ 

$$x^2 - 2x - 8 = 0$$

$$x^2 - 2x - 8 = 0$$
  $< \frac{-2}{4}$ 



Area = 
$$\int_{2}^{4} \left( (6-x) - \left( \frac{16}{x+4} \right) \right) dx = = 6(6) - \frac{1}{2} (16-4) - 16 (\ell n(8) - \ell n^2) = 30 - 32 \ell n^2$$

The eccentricity of hyperbola  $x^2 - y^2 \csc^2\theta = 5$  is  $\sqrt{7}$  times of eccentricity of ellipse  $x^2 + y^2 \csc^2\theta = 6$ 6.

5 then  $\theta$  is where  $0 < \theta < \frac{\pi}{2}$ 

(1) 
$$\theta = \frac{\pi}{3}$$

(2) 
$$\theta = \frac{\pi}{2}$$

$$(3) \theta = \frac{\pi}{-3}$$

(2) 
$$\theta = \frac{\pi}{2}$$
 (3)  $\theta = \frac{\pi}{-3}$  (4)  $\theta = \frac{2\pi}{3}$ 

Ans. (1)

Let e1 eccentricity of ellipse and e2 is eccentricity of hyperbola Sol.

$$e_1 = \sqrt{1 - \sin^2 \theta} = \cos \theta$$

$$e_2 = \sqrt{1 + \sin^2 \theta}$$

e₂ is √7 times of e₁

$$\sqrt{1+\sin^2\theta} = \sqrt{7}\cos\theta$$

$$1 + \sin^2 \theta = 7 \cos^2 \theta$$

 $2 = 8\cos^2\theta$ 

$$\cos^2\theta = \frac{1}{4}$$
,  $\cos\theta = \frac{1}{2}$ ,

$$\cos\theta = \frac{-1}{2}$$
 (rejected)

$$\theta = \frac{\pi}{3}$$

 $\vec{a} = -5\hat{i} + \hat{j} - 3\hat{k}, \ \vec{b} = \hat{i} + 2\hat{j} - 4\hat{k} \ \text{and} \ \vec{c} = \left[ \left( \vec{a} \times \vec{b} \right) \times \hat{j} \right] \times \hat{j} \right] \times \hat{j} \text{ then } \vec{c}. \left( -\hat{i} + \hat{j} + \hat{k} \right) = ?$  (9)  $\vec{c} = \left( \left( \vec{a}.\hat{j} \right) \vec{b} - \left( \vec{b}.\hat{j} \right) \vec{a} \right) \times \hat{j} \times \hat{j}$   $= \left( \left( \vec{b} - 2\vec{a} \right) \cdot \hat{j} \right) \hat{j} - \left( \vec{b} - 2\vec{a} \right) \cdot \left( \hat{j}.\hat{j} \right)$   $= \left( \left( 11\hat{i} + 2\hat{k} \right) \cdot \hat{j} \right) \hat{j} - \left( \vec{b} - 2\vec{a} \right)$ 7.

Ans.

Sol. 
$$\vec{c} = ((\vec{a}.j)\vec{b} - (\vec{b}.j)\vec{a}) \times j) \times j$$
  
=  $((\vec{b}-2\vec{a}) \times \hat{i}) \times \hat{i}$ 

$$= ((b-2\bar{a})\times j)\times j$$

$$= ((\vec{b} - 2\vec{a}) \cdot \vec{j}) \cdot \vec{j} - (\vec{b} - 2\vec{a}) \cdot (\vec{j} \cdot \vec{j})$$

$$=((11\hat{i}+2\hat{k}).\hat{j})\hat{j}-(\hat{b}-2\hat{a})$$

$$= -(\vec{b} - 2\vec{a}) = 2\vec{a} - \vec{b} = -11\hat{i} - 2\hat{k}$$

$$\vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) = 11 - 2 = 9$$

8. If 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1+e^{\sin x})(1+\sin^4 x)} dx = a\pi + b\ell n(3+2\sqrt{2})$$
, then a + b is equal to

Ans.

Sol. Using even odd property



$$= \int_{0}^{\frac{\pi}{2}} \left( \frac{8\sqrt{2}\cos x}{\left(1 + e^{\sin x}\right)\left(1 + \sin^{4}x\right)} + \frac{e^{\sin x}8\sqrt{2}\cos x}{\left(e^{\sin x} + 1\right)\left(1 + \sin^{4}x\right)} \right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1+\sin^{4}x)} dx \text{ Put } t = \sin x = 8\sqrt{2} \int_{0}^{1} \frac{dt}{1+t^{4}} = 4\sqrt{2} \int_{0}^{1} \frac{1+\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}} dt - 4\sqrt{2}t \int_{0}^{1} \frac{1-\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}} dt$$

$$=4\sqrt{2}\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)^{1}-4\sqrt{2}\frac{1}{2\sqrt{2}}\ln\left|\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}}\right|^{1}_{0}=2\pi+2\ln\left(3+2\sqrt{2}\right)$$

$$a+b=4$$

9. 
$$(\sqrt{3} + \sqrt{2})^x + (\sqrt{3} - \sqrt{2})^x = 10$$
 find sum of values of x

- (2)3
- (3)5
- (4) 2

Ans.

Sol. 
$$(\sqrt{3} + \sqrt{2})^x = t$$

$$t + \frac{1}{t} = 10 \Rightarrow t^2 - 10t + 1 = 0 \Rightarrow t = \frac{10 \pm \sqrt{96}}{2}$$

$$t = 5 \pm 2\sqrt{6} \implies (\sqrt{3} + \sqrt{2})^x = 5 + 2\sqrt{6} \implies x = \pm 2$$

$$sum = 0$$

10. 
$$\frac{x-\lambda}{-2} = \frac{y-2}{1} = \frac{z-1}{1}$$
 and  $\frac{x-\sqrt{3}}{1} = \frac{y-1}{-2} = \frac{z-2}{1}$  If the shortest distance between the above two lines is

1 then sum of possible values of λ

- (2) 2√3
- (3) 3√3
- $(4) 2\sqrt{3}$

Ans. (2)

Sol. S.D = 
$$\begin{vmatrix} \frac{1}{\vec{b}_1 \times \vec{b}_2} \begin{vmatrix} \lambda - 3 & 1 & -1 \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix}$$

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = \hat{i}(3) - \hat{j}(-3) + 3\hat{k}$$

$$=\left|\frac{3\left(\lambda-\sqrt{3}\right)+3-3}{\sqrt{9+9+9}}\right|=1\quad =\left|\frac{\lambda-\sqrt{3}}{\sqrt{3}}=1\Rightarrow\lambda-\sqrt{3}=\pm\sqrt{3}\right|\Rightarrow\lambda=0,\quad =2\sqrt{3}$$

11. 
$$\frac{dy}{dx} = 2x(x+y)^3 - x(x+y) - 1$$
 ,  $y(0) = 1$ , the find  $\left[\frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right)\right]^2 = ?$ 

(1) 
$$\log \frac{4}{4+5e}$$
 (2)  $\frac{2}{1+\sqrt{6}}$  (3)  $\frac{3}{3-\sqrt{e}}$  (4)  $\frac{1}{2-\sqrt{e}}$ 

(2) 
$$\frac{2}{1+\sqrt{6}}$$

(3) 
$$\frac{3}{3-\sqrt{e}}$$

$$(4) \frac{1}{2-\sqrt{e}}$$

Ans. (4)

**Sol.** put 
$$x + y = t$$

$$1 + \frac{dy}{dx} = \frac{dt}{dx}$$

Now 
$$\frac{dt}{dx} - 1 = 2xt^3 - xt - 1$$

$$\frac{dt}{dx} = 2xt^3 - xt$$

$$\frac{1}{t^3}\frac{dt}{dx} + \frac{x}{t^2} - 2x$$

Put 
$$\frac{1}{t^2} = u$$

$$\frac{-2}{t^3}\frac{dt}{dx} = \frac{du}{dx}$$

$$\frac{-1}{2}\frac{du}{dx} + xu = 2x$$

$$\frac{du}{dx} - 2xu = -4x$$

I.F = 
$$e^{-\int 2x dh} = e^{-x^2}$$

$$\frac{-1}{2} \frac{du}{dx} + xu = 2x$$

$$\frac{du}{dx} - 2xu = -4x$$

$$= e^{-\int 2xdh} = e^{-x^2}$$
Solve  $u \cdot e^{x^2} = \int e^{-x^2} \cdot (-4x) dx$ 

$$\frac{e^{-x^2}}{t^2} = \int e^{-x^2} (-4x) dx$$

$$-x^2 = z$$

$$-2xdx = dz$$

$$\frac{e^{-x^2}}{(x+y)^2} = \int 2e^z dz$$

$$\frac{e^{-x^2}}{(x+y)^2} = 2e^z + c$$

$$\frac{e^{-x^2}}{(x+y)^2} = 2e^{-x^2} + c$$

$$\frac{1}{(x+y)^2} = 2 + ce^{x^2}$$

at 
$$x = 0$$
,  $y = 1$ 

$$\frac{1}{1} = 2 + c$$

$$c = -1$$

Now 
$$(x + y)^2 = \frac{1}{2 - e^{x^2}}$$

at 
$$x = \frac{1}{\sqrt{2}} \Rightarrow \left(y + \frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2 - e^{\frac{1}{2}}}$$

$$\left(y\left(\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}}\right)^2 = \left(\frac{1}{2 - \sqrt{e}}\right)$$

Two circles  $c_1$ :  $x^2 + y^2 - 4x - 6y - 3 = 0$  and  $c_2$ :  $x^2 + y^2 + 2x - 14y + \lambda$  meet at two distinct 12. points then find the value of  $\lambda$ .

$$(1) - 31 < \lambda < 40$$

$$(2)-31 < \lambda < 49$$

(3) 
$$(-20 < \lambda < 49)$$

(4) 
$$(-11 < \lambda < 49)$$

Ans.

**Sol.** 
$$c_1 \equiv (2,3) r_1 = 4$$

$$C_2 = (-1, 7)$$
  $r_2 = \sqrt{50 - \lambda}$ 

$$C_1C_2 = 5$$

(1) 
$$-31 < \lambda < 40$$
 (2)  $-31 < \lambda < 49$  (3)  $(-20 < \lambda < 49)$  (4)  $(-11 < \lambda < 49)$  (2)  $-11 < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-11) < (-$ 

$$\Rightarrow 1 < \sqrt{50 - \lambda} \Rightarrow \lambda < 49$$

$$\Rightarrow -5 < \sqrt{50 - \lambda} - 4 < 5$$

$$\Rightarrow \sqrt{50-\lambda} < 9 \Rightarrow 50-\lambda < 8$$

$$\Rightarrow$$
 -31<  $\lambda$ 

$$\Rightarrow$$
 - 31 <  $\lambda$  < 49 Ans.

- 13. Five people are distributed in four identical rooms. A room can also contain zero people. Find the number of ways to distribute then
  - (1)47
- (2)53
- (3)43
- (4)51

Ans. (4)

- Sol. Since rooms are identical so we can distribute in following way
  - (1)
- (2)(3)

0

(4)

- 1 way = 1
- 0
- 0
- 5

- $\frac{5!}{4!4!}$  ways = 5

- 4

3

3

- $\frac{5!}{2! \ 3!}$  ways = 10

- $\frac{5!}{3!1!1!} \times \frac{1}{2!} = 10$
- 0

- 5! = 15
  - 0
- 2
- $\frac{5!}{1! \cdot 1! \cdot 1! \cdot 2!} \times \frac{1}{3!} = 10$  1

- 2

Total 51 ways

- (4) 10 1 x = x(t) solution of  $(t+1)dx = [2x+(t+1)^3]dt x(0) = 2$  then x(1) = x + x + 114.
  - (1)6
- (2)8

Ans. (3)

 $\frac{dx}{dt} - \frac{2x}{t+1} = (t+1)^2$ Sol.

I.F. = 
$$e^{\int \frac{-2}{t+1} dt} = e^{-2(n(t+1))} = \frac{1}{(t+1)^2}$$

$$\frac{x}{(t+1)^2} = \int 1.dt \Rightarrow \frac{x}{(t+1)^2} = t + c$$

$$t = 0, x = 2$$

$$c = 2$$

$$\Rightarrow \frac{x}{\left(t+1\right)^2} = t+2$$

$$x(1) = 12$$



15. Let S =  $\{1, 2, 3, .....20\}$ , R<sub>1</sub> =  $\{(a, b) : a \text{ divides b}\}$ , R<sub>2</sub> =  $\{(a, b) : a \text{ is integral multiple of b}\}$  and a, b  $\in$  S, then n  $(R_1 - R_2) = ?$ 

Ans. (46)

16. A bag contain 8 Ball, whose colour are either white or black ball, 4 balls are drawn at random without replacement and it was found that 2 ball are white and other 2 ball are black. Then probability that the bag contains equal number of white and black balls is.

$$(1) \frac{1}{5}$$

$$(2)\frac{1}{7}$$

= 66 - 20 = 46

(3) 
$$\frac{2}{5}$$

$$(4) \frac{2}{7}$$

Ans. (4)

n(s) = there are 5 possible sample space. Sol.

 $n(R_1 - R_2) = n(R_1) - n(R_1 \cap R_2)$ 

$$P\left(\frac{A_1}{E}\right) = \frac{P(A_1)P\left(\frac{E}{A_1}\right)}{P(A_1)P\left(\frac{E}{A_1}\right) + P(A_2)P\left(\frac{E}{A_2}\right) + \dots}$$

$$P\left(\frac{4B4W}{2B2W}\right) = \frac{P(4B4W) \times P\left(\frac{2B2W}{4B4W}\right)}{P(4B4W) \times P\left(\frac{2B2W}{4B4W}\right) + P(3B5W)P\left(\frac{2B2W}{3B5W}\right) + .....}$$

$$\frac{=\frac{1}{5} \times \frac{{}^{4}C_{2}{}^{4}C_{2}}{{}^{8}C_{4}}}{\frac{1}{5} \times \frac{{}^{4}C_{2}{}^{4}C_{2}}{{}^{8}C_{4}} + \frac{1}{5} \times \frac{{}^{5}C_{2}{}^{3}C_{2}}{{}^{8}C_{4}} \times 2 + \frac{1}{5} \times \frac{{}^{6}C_{2}{}^{2}C_{2}}{{}^{8}C_{4}} \times 2} = \frac{36}{36 + 60 + 30} = \frac{36}{126} = \frac{6}{21} = \frac{2}{7}$$



17. If x + 2y + 3z = 81,  $x, y, z \in W$  find the number of solutions

Ans. (588)

z = 0,  $x + 2y = 81 \Rightarrow 41$  Solutions Sol.

z = 1,  $x + 2y = 78 \Rightarrow 40$  Solutions

z = 2,  $x + 2y = 75 \Rightarrow 38$  Solutions

 $z = 27 x + 2y = 0 \Rightarrow 1$  Solutions

number of solutions = (1 + ..... + 41) - (3 + ..... + 39)

$$= 41 \times 21 - 3 \times \frac{13 \times 14}{2} = 21 \times 28 = 588$$

Given 5f(x) + 4f $\left(\frac{1}{x}\right)$  = x<sup>2</sup> - 2 and y = 9f(x)x<sup>2</sup>. An interval on which y is strictly increasing. 18.

- $(1) \left(0, \frac{1}{J_5}\right) \qquad (2) \left(\frac{-1}{J_5}, 0\right) \qquad (3) \left(\frac{-1}{J_5}, \frac{1}{J_5}\right) \qquad (4) \left(-\infty, \frac{-1}{J_5}\right)$

JEE READY?

Ans. (2)

 $5f\left(\frac{1}{x}\right) + 4f(x) = \frac{1}{x^2} - 2$ Sol.

 $\Rightarrow$  25f(x)+20f $\left(\frac{1}{x}\right)$ =5x<sup>2</sup>-10

 $\Rightarrow 16f(x) + 20f\left(\frac{1}{x}\right) = \frac{4}{x^2} - 8$ 

 $\Rightarrow 9f(x) = 5x^2 - 10 - \frac{4}{x^2} + 8$ 

 $\frac{dy}{dx} = 20x^3 - 4x = 4x(5x^2 - 1)$ 

in  $\left(-\sqrt{\frac{1}{5}},0\right)$  increasing

 $\frac{a-b\cos 2x}{x^2}$ ; x<0 $x^2 + cx + 2$ ;  $0 \le x \le 1$  If f is continuous and M is the number of points  $f: R \rightarrow R$  be defined by f(x)= 19.

where it is not differentiable then m + a + b + c

Ans. (2)



**Sol.** 
$$f(0^-) = f(0) \Rightarrow 2b = 2 \Rightarrow b = 1$$

$$f(1) = f(1^+) \Rightarrow 3 + c = 3 \Rightarrow c = 0$$

Now 
$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x < 0 \\ x^2 + 2, & 0 \le x \le 1 \end{cases}$$

$$2x + 1, 1 < x$$

$$\begin{cases} \frac{2\sin^2 x}{x^2}, & x < 0 \\ x^2 + 2, & 0 \le x \le 1 \end{cases}$$

$$2x + 1, 1 < x$$

clearly differentiable everywhere so m = 0

$$m + a + b + c = 2$$

20. Let 
$$f(x) = \frac{\cos^{-1}(1 - \{x\}^2)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}$$
. If  $f(0^+) = R$ ,  $f(0^-) = L$  then the value of  $\frac{16}{\pi^2}(L^2 + R^2)$  is

Ans.

Sol. 
$$L = \lim_{x \to 0^{-}} \frac{\cos^{-1}(1 - (x+1)^{2})\sin^{-1}(1 - (1+x))}{(x+1)(1 - (x+1)^{2})}, \{x\} = x+1$$

$$= \lim_{x\to 0^{-}} \frac{\cos^{-1}(-x^2 - 2x)\sin^{-1}(-x^2)}{(x+1)(-x^2 - 2x)}$$

$$=\frac{\cos^{-1}(0)}{1}\frac{1}{2}(1)=\frac{\pi}{4}$$

$$= \lim_{x \to 0^{-}} \frac{\cos^{-1}(-x^{2} - 2x)\sin^{-1}(-x)}{(x+1)(-x^{2} - 2x)}$$

$$= \frac{\cos^{-1}(0)}{1} \frac{1}{2} (1) = \frac{\pi}{4}$$

$$R = \lim_{x \to 0^{+}} \frac{\cos^{-1}(1-x^{2})\sin^{-1}(1-x)}{x(1-x^{2})}, \{x\} = x$$

$$\lim_{x \to 0^{-}} \frac{-1(-2x)\frac{\pi}{2}}{x(1-x^{2})}$$

$$\lim_{x \to 0^{-}} \frac{-1(-2x)\frac{\pi}{2}}{2\sqrt{1-(1-x^{2})^{2}}}$$

$$\lim_{x \to 0^{+}} \frac{\sqrt{2 - x^{2}}}{1} \frac{\pi}{2} = \frac{\pi}{\sqrt{2}}$$

$$\frac{16}{\pi^2} \left( L^2 + R^2 \right) = \frac{16}{\pi^2} \left( \frac{\pi^2}{16} + \frac{\pi^2}{8} \right) = 3$$