

www.eedge.in

JEE (MAIN) JANUARY 2023 DATE-24/01/2023 (SHIFT-2)

PHYSICS

1. A solenoid having 70 turns per cm current flowing in solenoid is 2 amp. Find magnetic field inside the solenoid.

3. Separation between earth and sun is given by 1.5×10^6 km. Time period of another planet is 2.83 year. Find distance of another planet from sun?

	(1) 3×10^{6} km	(2) 2×10^7 km	(3) 3×10^7 km	(4) 2×10^6 km
Ans. Sol	(1) $T^2 \propto R^3$			
501.	$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3$			
	$\left(\frac{1}{2.83}\right)^2 = \left(\frac{1.5 \times 10^6}{R_2}\right)^3$			
	$R_2 = (1.5 \times 10^6) \ (2.83)$	$(2)^{2/3}$ km		
	$=(1.5\times10^6)(8)^{1/3}$			
	$= 3 \times 10^6 \text{ km}$			

4. Choose the correct options based on the column shown below.

	1. TV signal				(P) 12 GHz
	2. Satellite				(Q) 30 MHz
	3. AM				(R) 88 MHz
	4. FM			(S) 1 MHz	
		1	2	3	4
	(1)	Р	Q	R	S
	(2)	Q	Р	S	R
	(3)	S	Q	R	Р
	(4)	Р	Q	S	R
Ans.	(2)				

If two vectors $\dot{P} = \hat{i} + 2m\hat{j} + m\hat{k}$ & $\dot{Q} = 4\hat{i} - 2\hat{j} + m\hat{k}$ are perpendicular to each other, then find value 5. of m.

- (2) m = 2(1) m = 3(3) m = 8(4) m = 1Ans. (2) OU JEE READY $P \cdot Q = 0$ Sol. $(\hat{i} + 2m\hat{j} + m\hat{k}).(4\hat{i} - 2\hat{j} + m\hat{k}) = 0$ $4 - 4m + m^2 = 0$ $m^2 - 2m - 2m + 4 = 0$ m(m-2) - 2(m-2) = 0m = 2
- A photon is emitted from n = 4 to n = 1 level in hydrogen atom the corresponding wavelength for 6. this transfer will be [hc = 1240 nm eV].
 - (1) 88.2 nm (2) 121.7 nm (3) 102.5 nm (4) 97.3 nm

```
Ans. (4)
```

Sol.
$$\Delta E = \frac{hc}{\lambda}$$

$$1 = \frac{hc}{\Delta E_{4-1}} = \frac{1240nm \text{ eV}}{12.75 \text{ eV}} = 97.3 \text{ nm}$$

7. When $_{z}X^{240}$ nucleus goes for fission, energy released is 200 MeV. Total energy released when 120g of this sample is _____ 10^{25} MeV.

Sol.
$$n_A = \frac{120}{240} = \frac{1}{2}$$

 $E_{total} = \frac{1}{2} \times 6.02 \times 10^{23} \times 200 \text{MeV} = 6 \times 10^{25} \text{ MeV}$

- 8. In an electromagnetic wave electric field and magnetic field is given by
 - $E = E_0 \sin (kx \omega t + \phi)$ $B = B_0 \sin (kx \omega t + \phi)$

Find correct relation.

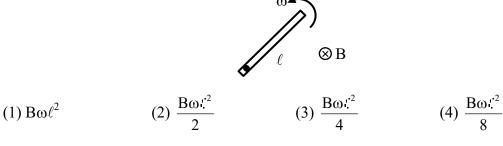
-

(1)
$$\frac{\omega}{k} = \frac{E_0}{B_0}$$

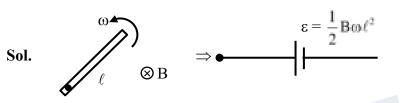
(2) $\frac{k}{\omega} = \frac{E_0}{B_0}$
(3) $\frac{\omega}{k} = B_0$
(4) $\omega k = E_0 B_0$
(1)
 $E_0 = B_0 C$
Speed of light $C = \frac{\omega}{k}$
 $\frac{E_0}{B_0} = \frac{\omega}{k}$

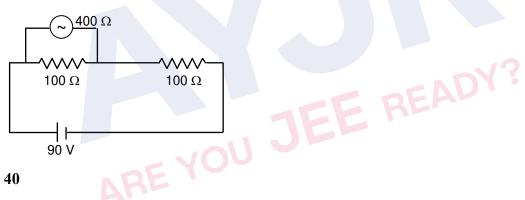
9. If all the particles have same kinetic energy, The relation between the wavelengths of alpha particle, electron and proton is :

Ans. (2)

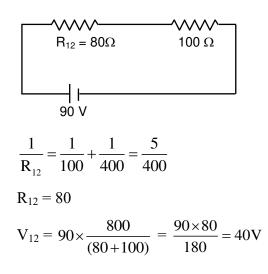

Ans.

Sol.


$$\begin{split} \lambda &= \frac{h}{mv} = \frac{h}{\sqrt{2mk}} \\ \therefore \qquad \mu_e < m_\rho < m_\alpha \qquad \therefore \qquad \lambda_e > \lambda_\rho > \lambda_\alpha \end{split}$$


10. A rod of length ℓ is rotating in a uniform magnetic field as shown in figure. Then induced e.m.f across its ends is.

Ans. (2)



11. Find reading of voltmeter ?

Ans. 40

Sol.

- **12.** When a parallel beam of white light incident on convex lens split into different colours the phenomenon is called.
 - (1) Spherical aberration
- (2) Chromatic aberration

(3) Polarization

(4) Diffraction

- **Ans.** (2)
- **13.** If frequency can be represented as $f = (radius)^a (density)^b (surface tension)^c$. Find a, b, c?
 - (1) $a = \frac{3}{2}, b = \frac{1}{2}, c = \frac{-1}{2}$ (2) $a = \frac{-3}{2}, b = \frac{-1}{2}, c = \frac{1}{2}$ (3) $a = \frac{-3}{2}, b = \frac{1}{2}, c = \frac{-1}{2}$ (4) $a = \frac{1}{2}, b = \frac{3}{2}, c = \frac{-1}{2}$

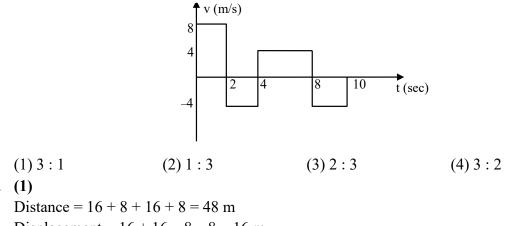
Ans. (2)

- Sol. $M^{0}L^{0}T^{-1} = L^{a} (ML^{-3})^{b} (MT^{-2})^{c}$ $M^{0}L^{0}T^{-1} = L^{a} M^{b}L^{-3b} M^{c}T^{-2c}$ Equivalent the power of MLT $M \Rightarrow 0 = b + c$ $L \Rightarrow 0 = a 3b$ $T \Rightarrow -1 = -2c$ $a = \frac{-3}{2}, b = \frac{-1}{2}, c = \frac{1}{2}$
- 14. A dielectric of 3.5 is inserted and the distance between the plates is doubled. Find new capacitance, if original capacitance was 7.5 pF?

Ans. 13.33

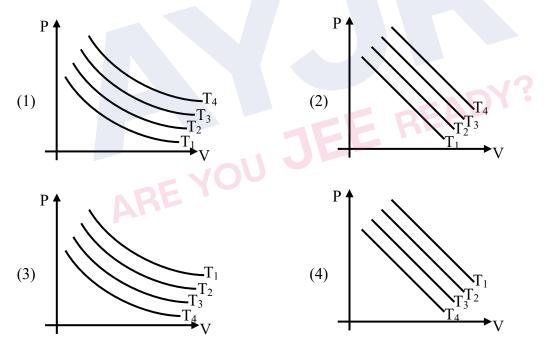
- **Sol.** C' = $\frac{K\epsilon_0 A'}{d'} = \frac{7}{2} \times \frac{\epsilon_0 A}{2d} = \frac{7}{4} \times \frac{15}{2} = \frac{105}{8} \text{ pF}$
- **15.** Statement-I : If we move upward and downward from the surface of earth surface acceleration due to gravity decreases in both upward and downward direction.

Statement-II : Acceleration due to gravity changes by same amount when we go up to height h and depth d when h = d.


Choose the correct options based on above statements.

- (1) Both statement-I and Statement-II are true.
- (2) Statement-I is true and Statement-II is false.
- (3) Statement-I is false and Statement-II are true.
- (4) Both statement-I and Statement-II are false.

Ans. (2)


16. A particle follows the above V - t graph, then the ratio of distance travelled and displacement of particle is given by :

Ans. (

Sol. Distance = 16 + 8 + 16 + 8 = 48 mDisplacement = 16 + 16 - 8 - 8 = 16 mRatio = $\frac{48}{16} = 3$

17. For an Isothermal expansion of an ideal gas in a closed container at different temperature P-V graph is given. Then choose the correct graph where $T_1 > T_2 > T_3 > T_4$.

Sol. PV = C; C = constant

If temperature will increase then C will increase.

 $P = \frac{C}{V} \rightarrow$ rectangular hyperbola

18. A block of mass 200 gm is connected with a spring of spring constant 12.5 N/m. It is rotating in horizontal plane with angular speed 5 rad/sec. Find ratio of elongation in spring and natural length?

(1)
$$\frac{2}{3}$$

(2) $\frac{3}{2}$
(3) $\frac{1}{3}$
(4) $\frac{1}{2}$
Ans. (1)
 $\stackrel{w}{\longleftarrow} \ell + x \longrightarrow$
Sol. $\stackrel{w}{\longleftarrow} \ell + x$
 $kx = m\omega^2 (\ell + x)$
 $(k - m\omega^2)x = m\omega^2 \ell$
 $\frac{x}{r} = \frac{m\omega^2}{k - m\omega^2} = \frac{0.2 \times 25}{\frac{25}{2} - 0.2 \times 25}$
 $\frac{x}{r} = \frac{2}{3}$

- A wire is extended by 20% keeping its volume is constant. Find the percentage change in its 19. ARE YOU resistance.
- **Ans. 44**
- **Sol.** $R = \frac{\rho!}{A} = \frac{\rho!}{V/!} = \frac{\rho!}{V} \propto !^2$

 $\ell \rightarrow 1.2 \ell$

$$\frac{\Delta R}{R} = \frac{1.44R - R}{R} \times 100\% = 44\%$$

Give yourself an extra edge

- **20.** S-1 \rightarrow Steel is used in construction of a bridge and house.
 - $S-2 \rightarrow$ Modulus of elasticity of steel is high.
 - (1) S-1 & S-2 both are true
 (2) S-1 is true & S-2 is false
 (3) S-1 is false & S-2 is true
 (4) S-1 & S-2 both are false

Ans. (1)

- 21. A lens of refractive index 1.5 and focal length 18 cm in air is submerged in water change in focal length of lens is $(\mu_w = \frac{4}{3})$
- Ans. 54

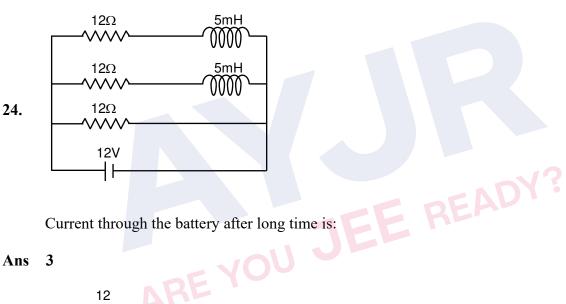
Sol.
$$\frac{1}{18} = (1.5-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
(1)
 $\frac{1}{f} = \left(\frac{1.5}{\frac{4}{3}} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ (2)
 $\frac{Eq(1)}{Eq(2)}$: $\frac{f}{18} = \frac{1.5-1}{\frac{9}{8}-1} = \frac{1/2}{1/8}$
 $f = 18 \times 4 = 72$ cm

change in focal length = 72 - 18 = 54 cm

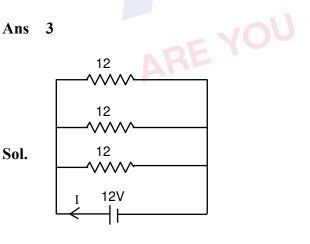
22. Two semicircular arcs of linear charge density λ are placed as shown in figure. Find the potential at the point O.

(1)
$$\frac{2\lambda}{\varepsilon_0}$$
 (2) $\frac{\lambda}{\varepsilon_0}$ (3) $\frac{\lambda}{2\varepsilon_0}$ (4) $\frac{3\lambda}{\varepsilon_0}$

Ans. (3)



Sol.
$$\frac{K[\lambda(\pi R_1)]}{R_1} + \frac{K\lambda(\pi R_2)}{R_2} = 2k\lambda\pi = \frac{\lambda}{2\epsilon_0}$$


- 23. Ratio of molar heat capacity at constant pressure and at constant volume for monoatomic and diatomic gas is?
 - (2) 21 : 25 (3) 16 : 25 (4) 25 : 16 (1) 25:21

Ans. (1)

 $\frac{\frac{5}{3}}{\frac{7}{5}} \Rightarrow \frac{5}{3} \times \frac{5}{7} = \frac{25}{21}$ Sol.

After long time

$$R_{eq}=\frac{12}{3}=4\Omega$$

(4) 256

$$I = \frac{V}{R_{eq.}} = \frac{12}{4} = 3A$$

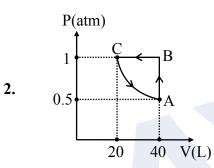
(2) 32

- A solid cylinder of radius R and length L have moment of inertia I1 and a second solid cylinder of 25. radius $\frac{R}{2}$ and length $\frac{L}{2}$ cut from it have moment of inertia I₂. Find $\frac{I_1}{I_2}$. (1) 64 (3) 128
- Ans. (2)

Sol.
$$I_{1} = M\left(\frac{R^{2}}{4} + \frac{L^{2}}{12}\right)$$
$$I_{1} = \frac{M}{4}\left(R^{2} + \frac{L^{2}}{3}\right)$$
$$M = \rho\pi R^{2}L$$
$$M_{2} = \rho\pi \frac{R^{2}}{8}L = \frac{M}{8}$$
$$I_{2} = \frac{M}{8} \times \frac{1}{4}\left[\frac{R^{2}}{4} + \frac{L^{2}}{12}\right]$$
$$= \frac{M}{128}\left(R^{2} + \frac{L^{2}}{3}\right)$$

CHEMISTRY

- 1. Sum of π -bonds in one molecule each of Peroxydisulphuric acid & Pyrosulphuric acid is:
- Ans. 8


Sol.

(Chemical Bonding)

U О II II HO⁻S-O-O-S 0 О π -bonds = 4 Peroxydisulphuric acid О НО⁻^S-О⁻^S-ОН π -bonds = 4

Pyrosulphuric acid

Sum = 4 + 4 = 8

1 mole of ideal gas undergoes above cyclic process.

Ans.

Sol.

1 mole of ideal gas undergoes above cyclic process.
Value of work done (in J) is :
$$(\ell n 2 = 0.7)$$

608 (Therm
 $W = W_{AB} + W_{BC} + W_{CA}$
 $= 0 - 1(20 - 40) + \left[-20 \pounds n \left(\frac{40}{20} \right) \right]$
 $= 20 - 20 \ell n 2$
20 (1 = 0.7)

- = 20 (1 0.7)
- = 6 L-atm

$$= 6 \times 101.3$$

$$= 607.8 \text{ J} \approx 608 \text{ J}$$

(Thermodynamics)

3.
$$\begin{array}{c} CH_3\\ H-C-COOH \text{ (Lactic acid) has } K_a = 10^{-5}\\ H-C-COOH \text{ (Lactic acid) has } K_a = 10^{-5}\\ H \end{array}$$

pH of a solution containing 0.005M anionic form of above acid $\begin{pmatrix} CH_3 \\ H-C-COO^- \\ I \\ OH \end{pmatrix}$ is :

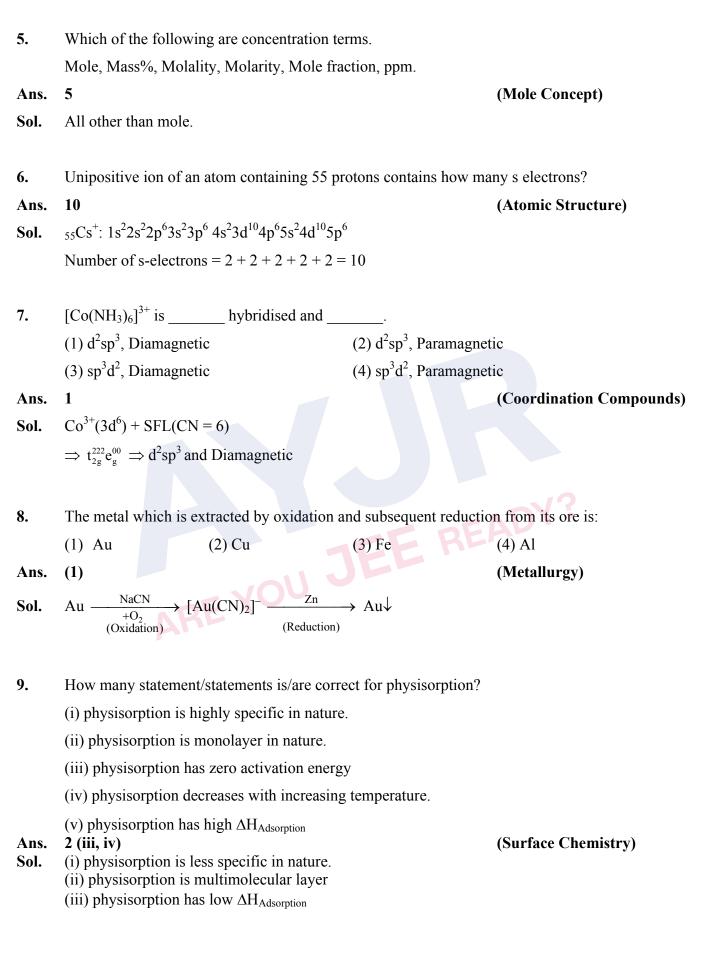
(Nearest integer)

Ans. 8

Sol. Salt of WA & SB

pH =
$$\frac{1}{2}$$
 (pK_w + pK_a + log C)
= $\frac{1}{2}$ (14 + 5 - 3 + log5)
= 8.35 ≈ 8

4. Which of the following statements are correct for given Andrew isotherm of CO₂


- (i) Formation of liquid starts at point C.
- (ii) From point B to C amount of liquid decreases.
- (iii) Formation of liquid starts from point B.
- (iv) At points B & C, both liquid & vapour coexist.
- (1) i, ii (2) ii, iii (3) iii, iv (4) i, iv
- Ans. (3)
- **Sol.** (i) Formation of liquid ends at point C.
 - (ii) From B to C, amount of liquid increases.

(Ionic Equilibrium)

(Real gas)

10. An ideal solution containing $X_A = 0.7$ has VP = 350 torr Another ideal solution containing $X_B = 0.2$ has VP = 410 torr $P_A^o = ?$ (nearest integer)

Ans. 314

(Solution & Colligative Properties)

Sol. $0.7 P_A^o + 0.3 P_B^o = 350$

& $0.2 P_A^o + 0.8 P_B^o = 410$

$$\therefore P_A^o = 314 \text{ torr}$$

11. H_2O_2 behave like reducing agent in which of the following reactions :

(1) $\operatorname{Fe}^{+2} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Fe}^{+3} + \operatorname{H}_2\operatorname{O}$ (2) $\operatorname{H}_2\operatorname{S} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{SO}_4^{2-} + \operatorname{H}_2\operatorname{O}$ (3) $\operatorname{HOCl} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Cl}^- + 2\operatorname{H}_2\operatorname{O} + \operatorname{O}_2$ (4) $\operatorname{Mn}^{+2} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{MnO}_2 + \operatorname{H}_2\operatorname{O}$

(p-Block (15-16 family))

(Chemical Kinetics)

- Ans. (3)
- **Sol.** H_2O_2 reduces HOCl to Cl^- and itself gets oxidised to O_2 .
- 12. $AB_3(g)$ dissociates into gaseous products with following data:

t _{1/2}	4 sec.	2 sec.	1 sec.	0.5 sec.
P ₀ (AB ₃)	50 torr	100 torr	200 torr	400 torr

Order of reaction is

Ans. 2

Ans.

Sol. $t_{1/2} \propto \frac{1}{P_o} \Rightarrow II \text{ order}$

13. Number of unpaired electron in highest occupied molecular orbital of following species is :

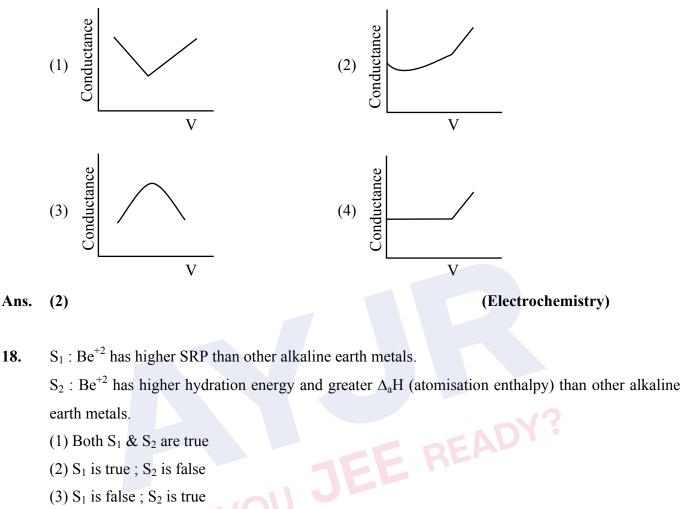
	N_2	${N_2}^\oplus$	O_2	${O_2}^\oplus$
(1)	0	1	2	1
(2)	1	0	1	2
(3)	2	2	0	2
(4)	1	1	1	0
(1)				

(Chemical Bonding)

Sol.
$$N_2 \to \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^2$$

HOMO
 $N_2^{\oplus} \to \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^1$
HOMO
 $O_2 \to \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \underbrace{\left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]}_{HOMO}$
 $O_2^{\oplus} \to \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \underbrace{\left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]}_{HOMO}$

14.Which is good oxidising agent ?(i)
$$Sm^{+2}$$
(ii) Ce^{+2} (iii) Ce^{+4} (iv) Tb^{+4} (1) Sm^{+2} only(2) Ce^{4+} , Tb^{4+} (3) Ce^{+4} only(4) Ce^{2+} onlyAns.(2)(f-Block)Sol. Ce^{4+} & Tb^{4+} are good oxidising agents (both get reduced to +3).

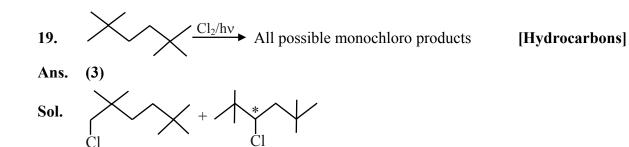

- **15.** $K_2Cr_2O_7$ paper acidified with dil. H_2SO_4 turns green when exposed to : (1) SO_2 (2) SO_3 (3) CO_2 (4) H_2S
- Ans. (1) Sol. $SO_2 \xrightarrow{K_2Cr_2O_7}_{H^+} Cr^{3+}_{(green)} + SO_4^{2-}$ (d-Block)
- 16. α -particle, proton & electron have same kinetic energy. Select correct order of their de-Broglie wavelength.
 - (1) $\lambda_e > \lambda_p > \lambda_\alpha$ (2) $\lambda_\alpha > \lambda_e > \lambda_p$ (3) $\lambda_p = \lambda_\alpha = \lambda_e$ (4) $\lambda_p > \lambda_e > \lambda_\alpha$ (1) (Atomic Structure)
- Ans. (1)

Sol.
$$\lambda = \frac{h}{m \cdot v} = \frac{h}{\sqrt{2 \cdot m \cdot K.E.}}$$

as K.E. is same $\Rightarrow \lambda \propto \frac{1}{\sqrt{m}}$
mass of electron = 9.1×10^{-31} kg
mass of proton = 1.67×10^{-27} kg
mass of α -particle = 6.68×10^{-27} kg
 $\Rightarrow \lambda_e > \lambda_p > \lambda_{\alpha}$

Give yourself an extra edge

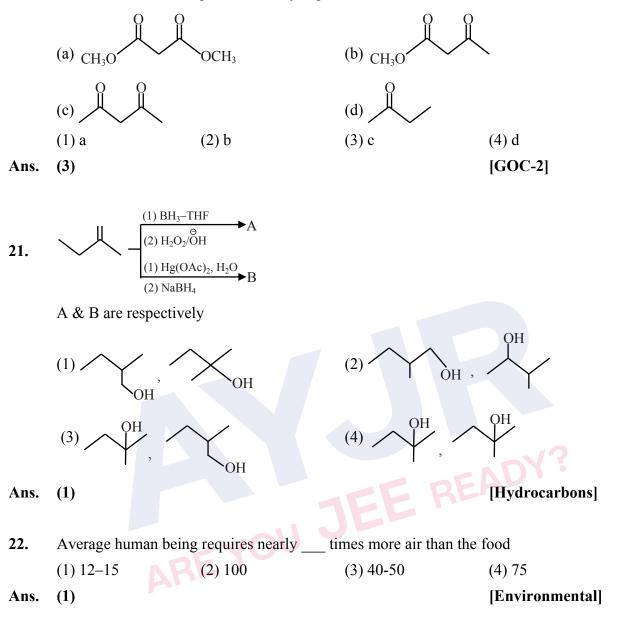
17. Which of the following is correct graph for conductometric titration between benzoic acid & NaOH?



- (1) Both $S_1 \& S_2$ are true
- (2) S_1 is true ; S_2 is false
- (3) S_1 is false ; S_2 is true
- (4) Both $S_1 \& S_2$ are false

(1) Ans.

(s-Block)


Sol. Be has least -ve SRP value because of high $\Delta_a H$ (atomisation enthalpy), inspite of maximum hydration energy.

 (d/ℓ)

20. Which of the following is most easily deprotonated ?

23. Statement-I : Aniline and other aryl amines are usually colourless
 Statement-II : Aniline and other arylamines get coloured on storage due to atmospheric oxidation
 (1) Both Statement-I and Statement-II are correct.

- (2) Both Statement-I and Statement-II are incorrect.
- (3) Statement-I is correct but Statement-II is incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

Ans. (1)

[Aromatic compound]

Sol. Both are correct

www.eedge.in

24. Assertion (A) : Benzene is more stable than hypothetical cyclohexatriene

Reason (R): The delocalised π -electrons cloud is attracted more strongly by the nuclei of the carbon atoms than the electron cloud localised between two carbon atoms.

- (1) Both (A) and (R) are true but (R) is not the true explanation of (A)
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the true explanation of (A)

Ans. (4)

[Hydrocarbon]

- **25.** Match the column
 - (P) Antifertility drugs (A) Norethindrone
 - (Q) Anti histamines (B) Seldane
 - (R) Tranquilizers (C) Meprobamate
 - (S) Antibiotics (D) Penicillin
 - (1) $P \rightarrow (A), Q \rightarrow (B), R \rightarrow (C), S \rightarrow (D)$
 - (2) $P \rightarrow (A), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (D)$
 - (3) $P \rightarrow (D), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (A)$
 - (4) $P \rightarrow (A), Q \rightarrow (D), R \rightarrow (B), S \rightarrow (C)$

Ans. (1)

26. How many tripeptides can be formed from the amino acid valine and proline?

Ans. 8

[Biomolecules]

[Chemistry in every day life]

www.eedge.in

MATHEMATICS SECTION-A

1. Find number of numbers greater then 7000 which can be formed by using the digits 3, 5, 6, 7 and 8. Repetition of digits is not allowed. (1) 68(2) 168 (3) 120 (4) 172 (2) Ans. Sol. Number of digit number $4 \times 3 \times 2 = 24$ 7 8 $4 \times 3 \times 2 = 24$ Number of 5 digit number 5! = 120 \therefore Total number of numbers = 24 + 24 + 120 = 1683√3 $\frac{48}{\sqrt{9-4x^2}}$ dx is equal to-2. (2) $\frac{\pi}{2}$ $(3)\frac{\pi}{3}$ (1) 2π $(4) \pi$ $\frac{\frac{3\sqrt{3}}{4}}{\int_{\frac{3}{4}}{\frac{24}{\sqrt{2}}}} = 24 \cdot \sin^{-1}\frac{2x}{3} \Big|_{\frac{3\sqrt{3}}{4}}{\frac{3\sqrt{3}}{4}} = 24 \left(\sin^{-1}\frac{\sqrt{3}}{2} - \sin^{-1}\frac{1}{\sqrt{2}} \right) = 2\pi$ If system of -Ans. Sol. If system of equation x + 2y = 6, x - 3y + 72z = 0, $x + y + \lambda z = \mu + 9$ has infinite solution then 3. ordered pair (λ, μ) is $(1) \left(\frac{72}{5}, \frac{-21}{5}\right) \qquad (2) \left(\frac{21}{5}, \frac{-72}{5}\right) \qquad (3) \left(\frac{-21}{5}, \frac{72}{5}\right) \qquad (4) \left(\frac{-21}{5}, \frac{-72}{5}\right)$ Ans. (1) **Sol.** $\begin{vmatrix} 1 & 2 & 0 \\ 1 & -3 & 72 \\ 1 & 1 & \lambda \end{vmatrix} = 0 \qquad \Rightarrow \lambda = \frac{72}{5}$ $\Delta_{\rm x} = \begin{vmatrix} 6 & 2 & 0 \\ 0 & -3 & 72 \\ 0 & 1 & 2 \end{vmatrix} = 0$ solving $\mu = -\frac{21}{5}$ Give yourself an extra edge www.ayjr.in

4. Consider a 3×3 matrix P such that $|adj (adj (adj P))| = (12)^4$, then find $|P^{-1} \cdot adj P|$

(1)
$$2\sqrt{3}$$
 (2) $\sqrt{3}$ (3) $\frac{\sqrt{3}}{2}$ (4) $\frac{1}{\sqrt{3}}$

Ans. (1)

Sol. $|P|^{2^{3}} = 12^{4} \Rightarrow |P|^{8} = 12^{4} \Rightarrow |P| = 12^{\frac{1}{2}} = 2\sqrt{3}$ $|P^{-1} \text{ adj } P| = |P^{-1}| |\text{adj } P| = \frac{1}{|P|} \times |P|^{2} = |P| = 2\sqrt{3}$ 5. Let $f(x) = \frac{2^{2x}}{2^{2x} + 2}$, then $\sum_{r=1}^{2022} f\left(\frac{r}{2023}\right)$ is (1) 1010 (2) $\frac{2023}{2}$ (3) 1011 (4) $\frac{2021}{2}$

Ans. (3)

Sol.
$$f(x) = \frac{4^{x}}{4^{x} + 2} \implies f(x) + f(1 - x) = 1$$

$$\therefore \sum_{r=1}^{2022} f\left(\frac{r}{2023}\right) = \left[f\left(\frac{1}{2023}\right) + f\left(\frac{2022}{2023}\right)\right] + \left[f\left(\frac{2}{2023}\right) + f\left(\frac{2021}{2023}\right)\right] + \dots$$

$$\dots + \left[f\left(\frac{1011}{2023}\right) + f\left(\frac{1012}{2023}\right)\right] = 1011$$

6. If $\frac{dy}{dx} = \frac{3y^{2} - x^{2}}{3xy}$, $y(1) = 1$, find $6y^{2}(e)$
(1) e^{2}
(2) $\frac{e^{2}}{2}$
(3) $\frac{e^{2}}{3}$
(4) $3e^{2}$

Ans. (3)

Sol.
$$y = mx \Rightarrow \frac{dy}{dx} = m + x \frac{dm}{dx}$$

 $m + x \frac{dm}{dx} = \frac{3m^2x^2 - x^2}{3mx^2} = \frac{3m^2 - 1}{3m}$
 $x \frac{dm}{dx} = \frac{3m^2 - 1 - 3m^2}{3m}$
 $3m dm = -\frac{dx}{x}$
 $3 \frac{m^2}{2} = -\ell n x + c$

Give yourself an extra edge

7.

 $\frac{3}{2} \frac{y^2}{x^2} = -\ell n x + c$ Given x = 1, y = 1 \Rightarrow c = $\frac{3}{2}$ $\frac{3}{2} \frac{y^2}{x^2} = -\ell n x + \frac{3}{2}$ At x = e, $\frac{3}{2} \frac{y^2}{e^2} = -1 + \frac{3}{2} = \frac{1}{2}$ $3y^2 = e^2$ $y^2(e) = \frac{e^2}{3}$ \therefore $6y^2(e) = 2e^2$ If $\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 \dots + n} = \frac{9}{5}$ then the value of n is-(4) 10 $\frac{(4)}{6} = \frac{10}{5}$ $\Rightarrow \frac{n(n+1)}{\frac{2n+1}{3} + \frac{1}{2}} = \frac{9}{5}$ Ans. Sol. $\Rightarrow \frac{\frac{3}{2}n(n+1)}{\frac{4n+2+3}{2}} = \frac{9}{5}$ $\Rightarrow \frac{15}{2}(n^2 + n) = 9(4n + 5)$ $5n^2 + 5n = 24n + 30$ $5n^2 - 19n - 30 = 0$ $5n^2 - 25n + 6n - 30 = 0$ $(5n+6)(n-5) = 0 \Longrightarrow n = 5$

8.
$$\begin{cases} \frac{1+\cos \frac{2\pi}{9} + \sin \frac{2\pi}{9}}{1+\cos \frac{2\pi}{9} - \sin \frac{2\pi}{9}} \end{bmatrix}^{3} \text{ is equal to} \\ (1) & -\frac{1}{2} + \frac{\sqrt{3}}{2} \text{ i} \qquad (2) -\frac{1}{2} - \frac{\sqrt{3}}{2} \text{ i} \qquad (3) \frac{1}{2} - \frac{\sqrt{3}}{2} \text{ i} \qquad (4) \frac{1}{2} + \frac{\sqrt{3}}{2} \text{ i} \\ \text{Ans. (1)} \end{cases}$$
Sol.
$$\begin{cases} \frac{2\cos^{2} \frac{\pi}{9} + 2i \cos \frac{\pi}{9} \cdot \sin \frac{\pi}{9}}{2\cos^{2} \frac{\pi}{9} - 2i \cos \frac{\pi}{9} \cdot \sin \frac{\pi}{9}} \end{bmatrix}^{3} = e^{\frac{2\pi}{3}} = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \\ \frac{2}{2\cos^{2} \frac{\pi}{9} - 2i \cos \frac{\pi}{9} \cdot \sin \frac{\pi}{9}} \end{bmatrix}^{3} = e^{\frac{2\pi}{3}} = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \\ 9. \quad \text{If } f(x) = x^{3} + x^{3} f(1) + xf^{*}(2) - f^{**}(3) \text{ (D)} = 2f(1) + 3f^{*}(2) - f^{**}(3) \\ (1) f(0) = f(1) + 3f^{*}(2) + f^{**}(3) \qquad (2) f(0) = 2f(1) + 3f^{*}(2) - f^{**}(3) \\ (3) f(0) = 2f(1) - f^{*}(2) + f^{**}(3) \qquad (4) f(0) = 3f(1) - f^{**}(2) - 3f^{**}(3) \\ \text{Ans. (3)} \\ \text{Sol. } f(x) = 3x^{2} + 2xf(1) + f^{**}(2) \Rightarrow f^{*}(1) + f^{**}(2) + 12 = 0 \\ f^{**}(x) = 6 \\ \therefore f(1) = -5 \\ f^{**}(2) = 2 \\ f^{**}(3) = 6 \\ f(0) = -6 \\ 10. \quad -(p \land (p \rightarrow -q))) \text{ is equivalent to-} \\ (1) p \rightarrow q \qquad (2) p \land q \qquad (3) p \lor q \\ \text{Ans. (1)} \\ \text{Sol. } -p \lor (-(p \rightarrow -q)) \\ -p \lor (p \land q) = p \rightarrow q \\ 11. \quad \text{The sum of coefficients of first 3 terms in the expansion of } \left(x - \frac{3}{x^{2}}\right)^{n} \text{ is 376. Find the coefficient of } x^{4} \\ (1) 695 \qquad (2) 410 \qquad (3) 405 \qquad (4) 395 \\ \text{Ans. (3)} \\ \text{Sol. } \quad ^{*}C_{0} - ^{*}C_{1}(3) + ^{*}C_{2}(9) = 376 \\ 1 - 3n + \frac{9n(n-1)}{2} = 376 \\ 2 - 6n + 9n^{2} - 9n = 752 \\ 9n^{2} - 15n - 750 = 0 \\ 3n^{2} - 5n - 250 = 0 \\ \Rightarrow n = 10 \\ T_{r+1} = ^{10}C_{r}(x)^{10-r} \left(\frac{-3}{x^{2}}\right)^{r} \\ T_{3} = 405 \end{cases}$$

If $\lim [x-5] - [2x+2] = 0$, (where [] denotes greatest integer function) then 'a' belongs to 12. $(1)\left(-\frac{15}{2},-\frac{13}{2}\right) \qquad (2)\left[-\frac{15}{2},-\frac{13}{2}\right) \qquad (3)\left(-\frac{15}{2},-\frac{13}{2}\right] \qquad (4)\left[-\frac{15}{2},-\frac{13}{2}\right]$ Ans. (1)f(x) is continuous $\forall x \in R - \left\{n + \frac{1}{2}\right\}, n \in I$ Sol. $\lim_{x \to a} f(x) = f(a)$... Hence [a - 5] - [2a + 2] = 0 \Rightarrow [a] - [2a] = 7 $a \in I a = -7$ $a \notin I a = I + f$ -I - [2f] = 7Case-I : $f \in \left(0, \frac{1}{2}\right)$ $f \in \left(\frac{1}{2}, 1\right)$ Case-II : -I = 7I = -8I = -7 $a \in (-7.5, -6.5)$ READY? At $a = n + \frac{1}{2}$, $n \in I$ \Rightarrow a \in (-7.5, -7) LHL ≠ RHL $a \in (-7.5, -6.5)$ *.*..

SECTION-B

13. Let a_1, a_2, \dots, a_6 are in Arithmetic Progression where $a_1 + a_3 = 10$. If mean of a_1, a_2, \dots, a_6 is $\frac{19}{2}$, then find the value of $8\sigma^2$ (where σ^2 denotes the variance of given numbers)

Ans. 210

Sol. a_1, a_2, \dots, a_6 $mean = \frac{19}{2}$ variance $= \sigma^2$ $a_1 + a_3 = 10$ $8\sigma^2 = ?$ $\frac{a_1 + a_2 + a_3 + a_4 + a_5 + a_6}{6} = \frac{19}{2}$ $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 57$

$$a_{2} + a_{4} + a_{5} + a_{6} = 47$$

$$\sigma^{2} = \frac{1}{6} \sum x_{i}^{2} - \left(\frac{19}{2}\right)^{2}$$

$$a_{1} + d + a_{1} + 3d + a_{1} + 4d + a_{1} + 5d = 47$$

$$4a_{1} + 13d = 47$$

$$a_{1} + a_{1} + 2d = 10$$

$$a_{1} + d = 5$$

$$4a_{1} + 13(5 - a_{1}) = 47$$

$$a_{1} = 2, d = 3$$

$$2, 5, 8, 11, 14, 17$$

$$\sigma^{2} = \frac{1}{6} (4 + 25 + 64 + 121 + 196 + 289) - \left(\frac{19}{2}\right)^{2}$$

$$= \frac{1}{6} \times 699 - \frac{361}{4} = \frac{699}{6} - \frac{361}{4}$$

$$\therefore 8\sigma^{2} = 210$$

2. If urn 1 contain 7 red & 3 green balls, urn2 contain 3 red and 2 green balls, urn 3 contain λ red & 2 green balls. One urn is selected at random & one ball is drawn. If probability of getting red ball is 0.6 then find value of λ .

Ans. (2)

Sol.
$$\frac{1}{3} \left[\frac{7}{10} + \frac{3}{5} + \frac{\lambda}{\lambda + 2} \right] = 0.6 \Rightarrow \cdot 7 + \cdot 6 + \frac{\lambda}{\lambda + 2} = 1.8 \Rightarrow \frac{\lambda}{\lambda + 2} = \cdot 5 = \frac{1}{2} \Rightarrow 2\lambda = \lambda + 2$$

 $\lambda = 2$

3. Relation R on the set $P = \{a, b, c, d\}$ is given by $R = \{(a, b), (b, c), (b, d)\}$. Find the minimum number of ordered pairs to be added in R so that it is an equivalence relation.

Ans. 13

Sol. $R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (a, c), (c, a), (c, d), (d, c), (a, d), (d, a)\}$

minimum no. of ordered pairs = 13

4. Consider a matrix of order 5×5 which can be formed using numbers 0 or 1. How many such matrices can be formed in which sum of elements in each column & each row is 1.

Ans. 120

I row has 5 options to place '1' II row has 4 options III row has 3 options IV row has 2 options V row has 1 options so total matrix = $5 \times 4 \times 3 \times 2 \times 1 = 120$

5. Consider a function f(x) such that $f(x + y) = f(x) \cdot f(y) \& f(1) = 3$. If $\sum_{k=1}^{k} f(k) = 3279$. Find 'n'.

Ans. 7

Sol. Put x = y = 1, $f(2) = 3^2$ Put x = 2, y = 1, $f(3) = 3^3$ and so on $\Rightarrow f(x) = 3^x$; $x \in N$ $\sum_{r=1}^n f(r) = 3 + 3^2 + \dots + 3^n = 3279$ $\Rightarrow n = 7$

- 6. Consider a triangle formed by lines AC : x y = 3, AB : x + 2y = 0 & BC : x + py = 21a. If centroid is (2, a), find $\ell(BC)^2$.
- **Ans.** 17

$$\frac{-2\alpha + 2 + \beta + 3}{3} = 2 \implies \beta = 1 + 2\alpha \quad \text{so } C (2\alpha + 4, 1 + 2\alpha)$$

$$A(2, -1)$$

$$G(2, a)$$

$$x - y = 3$$

$$G(2, a)$$

$$x + py = 21a$$

$$C (\beta + 3, \beta)$$

$$G(2, \alpha)$$

$$G(2, \alpha)$$

$$G(2, \alpha)$$

$$G(2, \alpha)$$

$$G(3, \alpha)$$

$$G($$

 $\frac{\alpha - 1 + \beta}{3} = a \Rightarrow \alpha + \beta = 3a + 1 \Rightarrow \alpha + 2\alpha + 1 = 3\alpha + 1 \Rightarrow \alpha = a, \beta = 1 + 2a$ B & C lies on x + py = 21a

\Rightarrow	$-2\alpha + p\alpha = 21\alpha$ &	$2\alpha + 4 + p(1 + 2\alpha) = 21a$
also	-2a + pa = 21a	2a + 4 + p + 2pa = 21a
pa = 2	23a	2a + 4 + p + 46a = 21a
\Rightarrow	a = 0 or $p = 23$ (rejected)	p + 4 = -27a
p =	4	
so B(0, 0), C(4, 1)	
BC =	$\sqrt{16+1} = \sqrt{17}$	

so
$$(BC)^2 = 17$$