

JEE (MAIN) JANUARY 2023 DATE-24/01/2023 (SHIFT-1)

PHYSICS

- 1. The kinetic energy of a particle is 10000 joule with the mass 2 kg. Find the momentum for the particle?
 - (1) 200 kg m/s
- (2) 400 kg m/s
- (3) 800 kg m/s
- (4) 600 kg m/s

Ans. **(1)**

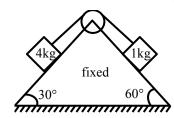
 $P = \sqrt{2m(K \cdot E)}$ Sol.

 $P = \sqrt{2 \times 2 \times 10000} = 200 \text{ kg m/s}$

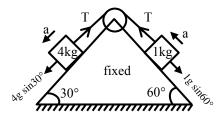
- 2. A Particle is projected vertically upward reaches 136 m height. What will be the maximum range for the particle projected with same speed?
 - (1) 272 m
- (2) 280 m
- (3) 290 m
- (4) 300 m

Ans. **(1)**

Sol. $\frac{U^2}{2g} = H_{\text{max}} = 136 \text{ m}$


 $R_{\text{max}} = 2 \times H_{\text{max}}$ $R_{\text{max}} = 272 \text{ m}$ Given system is performing SHM with time period $T = \frac{\pi}{\sqrt{x}}$. Find x (all surfaces are smooth)? **3.**

Ans.


Sol. $T = 2\pi \sqrt{\frac{2}{40}} = \frac{\pi}{\sqrt{5}}$ $\therefore x = 5$

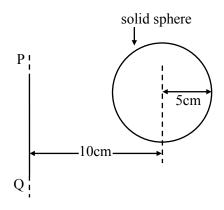
4. Find tension in string if all surfaces are smooth and string is massless.

- (1) $4(\sqrt{3}+1)N$ (2) $4(\sqrt{3}-1)N$
- (3) $(4\sqrt{3}+1)N$ (4) $(4\sqrt{3}-1)N$

Ans. **(1)**

Sol.

$$a = \frac{4g\sin 30^{\circ} - 1g\sin 60^{\circ}}{5} = \frac{20 - 5\sqrt{3}}{5} = (4 - \sqrt{3})\text{m/s}^{2}$$


$$4g\sin 30^{\circ} - T = 4a$$

$$T = 20 - 4(4 - \sqrt{3})$$

$$= 20-16+4\sqrt{3}$$

$$= 4 + 4\sqrt{3} = 4(\sqrt{3} + 1)N$$

EE READY? Radius of gyration of solid sphere about axis PQ is $\sqrt{x} \frac{R}{5}$ where R is radius of sphere. Find the **5.** value of x?

110 Ans.

Sol.
$$I_{com} = \frac{2}{5}MR^2$$

||axis theorem

$$I_{PQ} = I_{COM} + m(2R)^2 = \frac{2}{5}MR^2 + 4MR^2 = \frac{22}{5}MR^2$$

$$I_{PO} = MK^2$$

$$\frac{25}{5}MR^2 = MK^2 \Rightarrow K = \sqrt{\frac{25}{5}} \times R = \sqrt{110} \frac{R}{5}$$

- If equation of wave is given by $y = 0.05 \sin (2x 4t)$. Find velocity of wave? **6.**
 - (1) 1
- (2)2
- (3)4
- (4)05

(2) Ans.

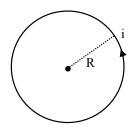
- $V = \frac{\text{coefficient of t}}{\text{coefficient of x}}$ Sol.

 - = 2 m/sec
- 7. In a hydrogen atom first line wavelength of paschen series is $\lambda = 720$ nm. Find out second line $\frac{1}{\lambda} \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ 1st wee

Ans.

Sol.
$$\frac{1}{\lambda} \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

1st wavelenth
$$\frac{1}{\lambda_1} \propto \left(\frac{1}{3^2} - \frac{1}{4^2}\right)$$


$$2^{\text{nd}}$$
 wavelenth $\frac{1}{\lambda_1} \propto \left(\frac{1}{3^2} - \frac{1}{5^2}\right)$

Taking ratio

$$\frac{\lambda_2}{\lambda_1} = \frac{25}{256}$$

$$\lambda_2 = \frac{720 \times 25}{256} \approx 70.31 \text{ nm}$$

Figure shows current carrying coil of radius R. Find $\frac{B_{centre}}{B_{centre}}$. 8.

- (1) $4\sqrt{2}$
- (2) $2\sqrt{2}$
- (3) $3\sqrt{2}$
- (4) $\sqrt{2}$

Ans. **(2)**

 $B_C = \frac{\mu_0 i}{2R}$ Sol.

... (1)

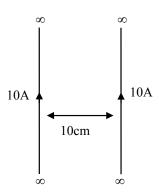
$$B_{r=R} = \frac{\mu_0 i R^2}{2(R^2 + R^2)^{3/2}} = \frac{\mu_0 i}{4\sqrt{2}R}$$

$$\frac{B_{C}}{B_{R,R}} = \frac{\mu_{0}i4\sqrt{2}R}{2R\mu_{0}i} = 2\sqrt{2}$$

- 9. Two charges q₁ & q₂ are placed in a di-electric medium 'K' at a separation d and resultant force on any charge is F_0 . If both are placed in air, then what should be the separation between them so that they experience same force?
 - (1) r = Kd

- (3) $r = d\sqrt{K}$ (4) $r = K^{3/2}d$

Ans. **(3)**


- Case-I: $F = \frac{Kq_1q_2}{\varepsilon_r d^2}$ Sol.
 - Case-II: $F = \frac{Kq_1q_2}{(d')^2}$ (2)

Equating equation (1) & (2)

$$\mathbf{d'} = \sqrt{\epsilon_r} d$$

$$=\sqrt{K}d$$

10. If a magnetic force on 10 cm portion of one wire is F₁. Now distance is halved and current gets doubled, then force on same portion is xF_1 . Find x.

Ans. 8

Sol.
$$F_1 = \frac{\mu_0 i^2}{2\pi r} \times 1$$

$$F_1 \propto \frac{i^2}{r}$$

$$\frac{F_1}{F_2} = \frac{i_1^2 / r_1}{i_2^2 / r_2} = \frac{1}{8}$$

$$F_2 = 8F_1$$

$$\therefore$$
 $x = 8$

- ARE YOU JEE READY? A circular loop of radius $\frac{10}{\sqrt{\pi}}$ cm is placed in a uniform time varying magnetic field with field 11. being perpendicular to the plane of the loop. If the field decreases from 0.5 T to zero in 0.5 sec, then induced emf in the loop at 0.25 sec. is:
 - (1) 1 mV
- (2) 10 mV
- (3) 5 mV
- (4) 100 mV

Ans. **(2)**

Sol.
$$|\epsilon| = A.\frac{dB}{dt} = \pi \times \left(\frac{100}{\pi} \times 10^{-4}\right) \times \frac{0.5}{0.5} = 0.01 \text{ Volt}$$

12. Statement-1: When light is incident from air to water then Brewster's angle is θ_B then if light is incident from water to air then Brewster's angle is $\frac{\pi}{2} - \theta_B$.

Statement-2: When light goes from air to any medium of refractive index is μ , then Brewster's angle (θ_B) is given by $\theta_B = tan^{-1}(\mu)$.

- (1) both statement-1 and Statement-2 is true
- (2) statement-1 is true and statement-2 is false
- (3) statement-1 is false and statement-2 is true
- (4) both statement-1 and statement-2 are false

Ans. (1)

Sol.
$$r + r' = 90^{\circ}$$

$$r' = 90^{\circ} - r$$

but
$$r = i$$

$$r' = 90^{\circ} - i$$

Now if light is incident from water to air then angle of incidence is $\frac{\pi}{2}$ – i .

13. A cylinder has inner radius 2 mm and outer radius 4 mm. The resistivity of its material is $2.4 \times 10^{-5} \Omega$ m and its length is 3.14 m given. Find out its resistance between two ends?

Ans. 2

Sol.
$$R = \rho \frac{r}{A}$$

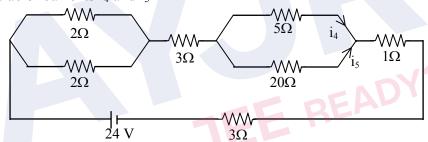
$$R = \frac{2.4 \times 10^{-5} \times 3.14}{\pi [16 - 4] \times 10^{-6}}$$

$$R = 2 \Omega$$

14. Weight of an object on Earth is 18 N. Find out its weight (in N) at height 3200 km from the earth surface?

Ans. 8

Sol.
$$R_e = 6400 \text{Km}$$


height = 3200 Km =
$$\left(\frac{R_e}{2}\right)$$

$$W_{earth} = 18 \text{ N} = \text{m} \frac{\text{GM}_e}{\text{R}_e^2}$$

$$W' = m \frac{GM_e}{\left(R_e + \frac{R_e}{2}\right)^2}$$

$$W' = m \frac{GM}{R_a^2} \left(\frac{4}{9} \right) = 18 \times \frac{4}{9} = 8N$$

15. Find the value of currents i_4 and i_5

$$(1) \frac{2}{5}, \frac{8}{5}$$

(2)
$$\frac{8}{5}$$
, $\frac{2}{5}$

$$(3) \frac{3}{5}, \frac{6}{5}$$

$$(4) \frac{1}{5}, \frac{4}{5}$$

Ans. (2)

Sol.
$$R_{eq} = \frac{2 \times 2}{2 + 2} + 3 + \frac{5 \times 20}{5 + 20} + 1 + 3$$

$$R_{eq} = 1 + 3 + 4 + 1 + 3 = 12\Omega$$

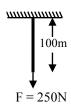
$$i_{circuit} = \frac{24}{R_{eq}} = \frac{24}{12} = 2A$$

$$i_4 = i_{\text{circuit}} \frac{(20)}{20+5} = 2 \times \frac{20}{25} = \frac{8}{5} A$$

$$i_5 = i_{circuit} \frac{(5)}{20+5} = \frac{2 \times 5}{25} = \frac{2}{5} A$$

Ans.
$$\left(\frac{8}{5}, \frac{2}{5}\right)$$

16. Statement-1: In photodiode, the intensity of light is measured while reverse biasing the photodiode.


Statement-2: Forward bias current is more than reverse bias current in PN junction.

- (1) TF
- (2) TT
- (3) FF
- (4) FT

Ans. (2)

17. A force of 250 N is applied on a wire as shown

[Young Modulus = 10^{10} N/m², Area = 6.25×10^{-4} m²]. Find extension (in cm) is spring?

Ans. 0.4

Sol. F = Kx

$$250 = \frac{\gamma A}{1} x$$

$$250 = \frac{10^{10} \times 6.25 \times 10^{-4} \,\mathrm{x}}{100}$$

$$x = 4 \times 10^{-3} \text{m}$$

$$x = 0.4 \text{ cm}$$

18. Match the column.

Column-I

- (a) h (Planck's constant)
- (b) P (momentum)
- (c) V (stopping potential)
- (d) ϕ (work function)
- Choose the correct option

$$(1)$$
 (a) \rightarrow Q, (b) \rightarrow P, (c) \rightarrow S, (d) \rightarrow R

$$(2)$$
 $(a) \rightarrow P$, $(b) \rightarrow Q$, $(c) \rightarrow R$, $(d) \rightarrow S$

$$(3)$$
 (a) \rightarrow R, (b) \rightarrow P, (c) \rightarrow S, (d) \rightarrow Q

$$(4)$$
 (a) \rightarrow S, (b) \rightarrow P, (c) \rightarrow Q, (d) \rightarrow R

Ans. (1)

Column-II

(P) $[M^1L^1T^{-1}]$

YOU JEE READY?

- (Q) $[M^1L^2T^{-3}]$
- (R) $[M^1L^2T^{-2}]$
- (S) $[M^1L^2T^{-3}A^{-1}]$

Sol. h(Planck's constant)

(a)
$$E = hv$$

$$\frac{[ML^2T^{-2}]}{[T^{-1}]} = h = [M^1L^2T^{-1}] = h$$

$$P = mv = [m][LT^{-1}] = [MLT^{-1}]$$

$$V_s = Ed = \frac{Fd}{q} = \frac{[M^1L^1T^{-2}][L]}{[AT]} = [M^1L^2T^{-3}A^{-1}]$$

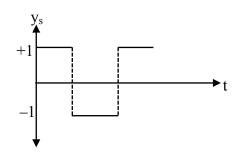
Work function (\phi) (d)

$$\phi = \text{Energy}$$

$$\phi = [M^1 L^2 T^{-2}]$$

- An Electromagnetic wave propagation vector \vec{K} and electric field \vec{E} . If ω is the angular 19. frequency then the value of the magnetic field is?

 - (1) $\omega(\vec{K} \times \vec{E})$ (2) $\frac{I}{\omega}(\vec{K} \times \vec{E})$ (3) $\vec{K} \times \vec{E}$
- (4) $\vec{E} \times \vec{K}$


Ans.

Sol.
$$C = \frac{E}{B}$$
 and $C = \frac{\omega}{K}$

$$\frac{\omega}{K} = \frac{E}{B} \implies B = \frac{EK}{\omega}$$

and $(\vec{K} \times \vec{E})$ is direction of propagation of \vec{B} .

A signal of square shape is superimposed with a carrier wave $y_c = 2 \sin (\omega_c t - kx)$, then **20.** modulation index of amplitude modulated wave is

- (1) 1 : 2
- (2)1:4
- (3)4:1
- (4) 2 : 1

Ans. **(1)**

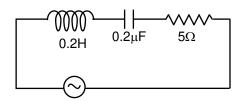
$$\textbf{Sol.} \qquad \mu = \frac{A_m}{A_c} = \frac{1}{2}$$

21. Statement 1: If temperature of a gas is increased from - 73°C to 527°C then its rms velocity becomes double.

Statement 2: Product of pressure and volume is equal to translational kinetic energy of an ideal EE READY? gas.

- (1) Statement 1 is true, statement-II is true
- (2) Statement 1 is false, statement-II is true
- (3) Statement 1 is true, statement-II is false
- (4) Statement 1 is false, statement-II is false

Ans. **(3)**


Statement-1 $V_{rms} = \sqrt{\frac{3RT}{M_o}}$ Sol.

$$\frac{V_{rms_1}}{V_{rms_2}} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{200}{800}} = \frac{1}{2}$$

$$2V_{rms_1} = V_{rms_2}$$

Statement-2 $K.\varepsilon_T = \frac{3}{2}PV$

22. Calculate the ratio of quality factor and band width for the following circuit.

Ans. 8

Sol. For an RLC circuit

band with
$$=\frac{R}{L} = \frac{5}{0.2}$$
 Hz

for an RLC circuit factor
$$\frac{\sqrt{L}}{R\sqrt{C}} = \frac{\sqrt{0.2}}{5 \times \sqrt{0.2} \times 10^{-6}} = 200$$

$$\frac{Q}{B \text{ width}} = \frac{200}{25} = \frac{8}{1}$$

23. A radioactive substance $^{218}_{84}$ X undergoes following decay:

$$\begin{array}{c} 218 \\ 84 \\ X \\ \end{array} \xrightarrow{\alpha - Decay} A \xrightarrow{\beta^- - Decay} B \xrightarrow{\alpha - Decay} C \xrightarrow{\beta^+ - Decay} D \xrightarrow{\gamma - Decay} Y$$

Then product y is:

- $(1)_{84}^{210}Y$
- (2) $^{210}_{80}$ Y
- $(3)_{84}^{208}Y$
- $(4)_{82}^{210}Y$

Ans. (2)

Sol. By mass conservation : $218 - 4 \times 2 = 210$

By Charge conservation : $84 - 2 \times 2 + (-1) + 1 \times 1 = 80$

- 24. 1 gm liquid is converted into vapour under 3×10^5 Pa. 10% of heat is used to expand volume by 1600 cm^3 . What is the increase in internal energy:-
 - (1)4800
- (2)4320
- (3) 4300
- (4) 400

Ans. (2)

Sol. 10% of heat is used in expansion

Rest 90% will increase internal energy

$$Q \times \frac{10}{100} = P.\Delta V = 3 \times 10^5 \times 1600 \times 10^{-6}$$

$$0.1Q = 48 \times 10 = 480$$

$$Q = 4800 J$$

$$\Delta U = 0.9 \text{ Q} = 0.9 \times 4800 = \boxed{4320 \text{J}}$$

- 25. Choose the correct option based on the following statements
 - (a) Photoelectric effect is explained by wave theory
 - (b) Stopping potential may depend on work function
 - (c) If intensity of light increases then photoelectric current also increases
 - (d) If intensity of light increases then maximum kinetic energy of photoelectrons increases.
 - (1)(a, d)
- (2)(a, c)
- (3) c
- (2) (b, c, d)

Ans **(3)**

Basic Theory

EE READY? If $A = 3\hat{i} - 2\hat{j} + b\hat{k}$ and $B = a\hat{i} + \frac{7}{2}\hat{j} + 2\hat{k}$ and A & B are perpendicular to each other, also **26.**

$$2a-3b=-4$$
. If $\frac{a}{b}=\frac{x}{2}$. The value of x is?

Ans. **(1)**

Sol.
$$\dot{A}.\dot{B} = 0$$

$$3a - 7 + 2b = 0$$

$$3a + 2b = 7$$

$$\Rightarrow$$
 a = 1 & b = 2

CHEMISTRY

1. [Co(NH₃)₅Cl]Cl₂ primary and secondary valency will be:

[Coordination compound]

Sol. 3, 6

 $CoCl_4^{2-}$ electronic configuration $\rightarrow e^m t_2^n$. 2.

Calculate m + n. n = number of unpaired electronsAns.

[Coordination compound]

- 3d⁷ WFL Sol. $EC \rightarrow e^4 t_2^3$ m = 4, no. of unpaired electron = 3
- Graph of X-ray frequency $(v)^n$ v/s atomic number (Z) is linear. Find the value of n. 3.
 - $(1) \frac{1}{2}$
- (2) 1
- $(3)-\frac{1}{2}$
- (4) -1

Ans. $\nu^n \propto Z$ Sol.

 $\sqrt{v} = a(Z - b)$

$$\therefore n = \frac{1}{2}$$

- The wavelength of first line of paschen series is 720 nm, then calculate wavelength of second line 4. JEE F of paschen series?
- 492.1875 nm Ans.

[Atomic Structure]

[Periodic properties]

Paschen series first line : $4 \rightarrow 3$ Sol. $\frac{1}{\lambda_{\rm H}} = R_{\rm H} Z^2 \left(\frac{1}{9} - \frac{1}{16} \right)$

$$\frac{1}{720} = R_H Z^2 \left(\frac{7}{16 \times 9} \right) \dots (i)$$

Paschen series second line: $5 \rightarrow 3$

$$\frac{1}{\lambda_2} = R_H Z^2 \left(\frac{1}{9} - \frac{1}{25} \right)$$

$$\frac{1}{\lambda_2} = R_H Z^2 \left(\frac{16}{9 \times 25} \right) \quad \dots (ii)$$

eq. (i) / (ii)

$$\frac{\lambda_2}{720} = \left(\frac{7}{16 \times 9}\right) \times \left(\frac{9 \times 25}{16}\right)$$

 $\lambda_2 = 492.1875 \text{ nm}$

5.	Find	correct	order	of co	valent	character	
J.	THIU	COHICCE	oruci		vaiciii	CHALACICI	

[Chemical bonding]

- (A) KF < KI
- (B) CuCl > NaCl
- (C) LiF > KF
- (1) A & B only
- (2) A & C only
- (3) A, B & C
- (4) B & C only

Ans. (3)

- **6.** Freezing point of solution is less than that of pure solvent, which of the following statements are correct?
 - (A) Vapour pressure of solution is less than that of pure solvent
 - (B) Vapour pressure of solution is greater than that of pure solvent
 - (C) Only solvent molecules will freeze
 - (D) Only solute molecules will freeze
 - (1) A & B only
- (2) A & C only
- (3) C & D only
- (D) A, B & D only

Ans. (2)

[Solution & colligative properties]

- 7. For which of the following aqueous ion, spin only magnetic moment is 3.87 BM?
 - $(1) T_i^{2+}$
- (2) V^{2+}
- $(3) Cr^{2+}$
- $(4) \, \mathrm{Mn}^{2+}$

Ans. (2)

Sol. $V^{2+} = 3d^3 4s^0$

[d & f-block]

- **8.** Correct order of strength of H-bond in the following:
 - (A) Liquid water
- (B) Ice
- (C) Impure water

- (1) A > B > C
- (2) A < B < C
- (3) B > A > C
- (4) A = B > C

Ans. (3)

[Hydrogen]

- 9. How many reactions are nonspontaneous at 300 K. For independent reaction ΔH & ΔS values are given
 - (1) $\Delta H = -25 \text{ kJ/mole}$, $\Delta S = -80 \text{ J/mole}$
- (2) $\Delta H = +25 \text{ kJ/mole}$, $\Delta S = -50 \text{ J/mole}$
- (3) $\Delta H = 22 \text{ kJ/mole}$, $\Delta S = +50 \text{ J/mole}$
- (4) $\Delta H = -22 \text{ kJ/mole}$, $\Delta S = 80 \text{ J/mole}$

Ans. (2)

[Thermodynamics-2 (2nd law & 3rd law)]

- **Sol.** (1) Spontaneous
 - (2) Non-Spontaneous
 - (3) Non spontaneous
 - (4) Spontaneous

10. Buffer solution of pH = 5 prepared by mixing 25 ml, 0.2M CH₃COONa and 25ml, 0.02M CH₃COOH, if Ka of CH₃COOH = $x \times 10^{-5}$ find x.

(10)Ans.

[Ionic Equilibrium (Elementary)]

Sol.
$$pH = pKa + log \frac{0.1}{0.01}$$

 $5 = pKa + log 10$
 $pKa = 4$
 $Ka = 10^{-4}$
 $= 10 \times 10^{-5}$
 $= 10$

11. Column-I

Column-II

(A) Zone refining

(P) pig iron

(B) Electrolysis

- (Q) Al
- (C) Reverberatory furnace
- (R) Si

(D) Blast furnace

- (S) Cu
- Α C D S P (1) R Q P S R (2) Q Q
- (3) P S
- R
- **(4)** S P
- R Q

Ans. **(1)** [Metallurgy]

- How many statements are correct regarding Arrhenius equation? $(K = Ae^{-E_a/RT})$ **12.**
 - (I) Slope of graph between $\ln K \text{ v/s } \frac{1}{T} \text{ is } -\frac{E_a}{P}$
 - (II) On increasing E_a , rate constant decreases
 - (III) On increasing temperature, temperature coefficient decreases
 - (IV) On increasing activation energy fraction of molecules crossing energy barrier increases

Ans. **(3)** [Chemical Kinetics]

- Sol. (I), (II) & (III) are correct.
- 5g of NaOH is mixed with 450 ml of de-ionized water to form stock solution. What volume of 13. this stock solution is used to prepare 500ml, 0.1M solution.

180 ml Ans.

[Mole Concept]

$$\begin{aligned} \textbf{Sol.} & \quad M_1 V_1 = \ M_2 V_2 \\ & \frac{5}{40} \times \frac{1000}{450} \times V = 0.1 \times 500 \\ & V = \frac{0.1 \times 500 \times 40 \times 450}{5 \times 1000} \\ & V = 180 \ ml \end{aligned}$$

[Carbonyl compounds]

$$(1) \bigcirc OH$$

$$(2) \bigcirc OH$$

$$(3) \bigcirc OH$$

15.
$$OH \longrightarrow A$$
, $OH \longrightarrow B$ $O-CH_3$ CH_2-OH

[Alcohols, Phenols & Ethers]

Products A and B are respectively

OH
$$(1)$$
 OH (2) OH (3) OH (4) OH (5) OH (6) OH (7) OH (7) OH (8) OH (1) OH (2) OH (2) OH (3) OH (4) OH (4) OH (5) OH (7) OH (7) OH (8) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (5) OH (7) OH (7) OH (8) OH (1) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (5) OH (6) OH (7) OH (7) OH (7) OH (8) OH (9) OH (1) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (5) OH (6) OH (7) OH (7) OH (8) OH (1) OH (1) OH (1) OH (1) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (5) OH (6) OH (7) OH (1) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (4) OH (5) OH (6) OH (7) OH (7)

Ans. (2)

Sol. OH OH OH
$$Br^ S_N$$
 Reaction OH CH_3 OH CH_3 OH CH_3 OH CH_2

16. Which of the following is correct stability order of the given resonance structures?

[GOC-1]

$$(d)$$
 MeO

(1)
$$a > b > c > d$$

(2)
$$b > a > d > c$$

Ans. (3)

17. Mass percentage of nitrogen in uracil is

[Biomolecules]

Ans. 25

Sol. Molecular formula of uracil is $C_4H_4N_2O_2$

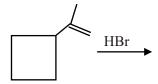
Molecular mass of uracil is 112

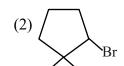
% of N in uracil =
$$\frac{28}{112} \times 100 = 25$$

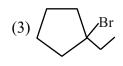
18. Compound (X) $\xrightarrow{(1) \text{ HCHO/OH}^-}$ HO $\xrightarrow{(2) \text{ KCN/H}^+}$ $\xrightarrow{(3) \text{ H}_3\text{O}^+}$ $\xrightarrow{(4) \Delta}$ $\xrightarrow{(4) \Delta}$ $\xrightarrow{(3) \text{ H}_3\text{C}}$

[Carbonyl compounds]

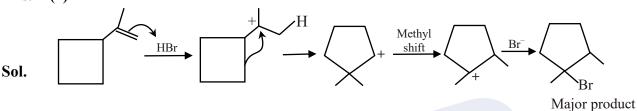
X will be:


$$(2)$$
 CH_3 CH CHO


Ans. (2)


Sol.
$$CH_3$$
 CH_3 CH

19. Major product of the given reaction will be :


[Hydrocarbons]

Ans. (1)

20. Which of the following statements is correct?

[Haloalkanes & Haloarenes]

- (1) All radicals are known as freons.
- (2) Freons cause skin cancer.
- (3) Freons are chlorofluoro carbon.
- (4) Freons are used in sunscreen lotion.

Ans. (3)

Sol. Freons are chlorofluoro carbon. Other given statements are wrong.

21. How many moles of AgCl are formed in the given reaction?

[Haloalkanes & Haloarenes]

Ans. (1)

Sol.

Only chlorine atom attached with sp³ hybrid carbon (haloalkane) in given molecule reacts with AgNO₃ and produces white ppt of AgCl, so only one mole AgCl is formed.

22. Statement-I

[Chemistry in every day life]

Noradrenaline is one of the neurotransmitter.

Statement-II

Low level of noradrenaline is not cause of depression in humans.

- (1) Both Statement-I and Statement-II are correct.
- (2) Both Statement-I and Statement-II are incorrect.
- (3) Statement-I is correct but Statement-II is incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

Ans. (3)

MATHEMATICS

1. If
$$I = \int_{0}^{\pi/2} \frac{(\sin x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$$
, then the value of I is

$$(1) \frac{\pi}{4}$$

$$(2) \ \frac{\pi}{2}$$

$$(3) \frac{3\pi}{4}$$

(4)
$$\frac{3\pi}{2}$$

Ans.

Sol.
$$I = \int_{0}^{\pi/2} \frac{(\sin x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$$

$$I = \int_{0}^{\pi/2} \frac{(\cos x)^{2023}}{(\cos x)^{2023} + (\sin x)^{2023}} \dots (a + b - X \text{ property})$$

$$2I = \int_{0}^{\pi/2} dx \implies I = \frac{\pi}{4}$$

If $I = \int_{0}^{3} |x^2 - 3x + 2| dx$, then find the value of 12I 2.

Ans.

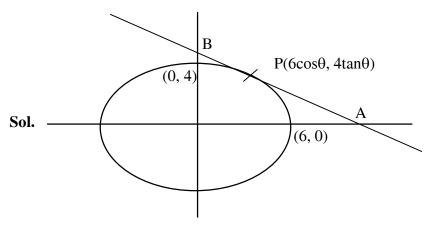
Sol.
$$I = \int_{0}^{1} (x^{2} - 3x + 2) dx - \int_{1}^{2} (x^{2} - 3x + 2) dx$$

$$+ \int_{2}^{3} (x^{2} - 3x + 2) dx$$

$$I = \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)_{0}^{1} - \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)_{1}^{2}$$

$$+ \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)_{2}^{3}$$

$$= \left(\frac{1}{3} - \frac{3}{2} + 2\right) - \left(\frac{8}{3} - 6 + 4 - \left(\frac{1}{3} - \frac{3}{2} + 2\right)\right) + 9 - \frac{27}{2} + 6 - \left(\frac{8}{3} - 6 + 4\right)$$


$$= \frac{5}{6} - \left(\frac{2}{3} - \frac{5}{6}\right) + \frac{3}{2} - \frac{2}{3}$$

$$I = \frac{1}{3} + \frac{3}{3} + \frac{11}{3} + \frac{12}{3} + \frac{23}{3}$$

$$I = \frac{1}{3} + \frac{3}{2} = \frac{11}{6} \implies 12I = 22$$

A tangent at P on the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ is drawn. If this tangent cuts x -axis & y-axis at the **3.** points A and B respectively then find minimum possible value of AB.

Ans. (10)

Let $P = (6 \cos\theta, 4 \sin\theta)$

Equation of tangent will be

$$\frac{x\cos\theta}{6} + \frac{y\sin\theta}{4} = 1$$

$$\therefore AB = \sqrt{\frac{36}{\cos^2 \theta} + \frac{16}{\sin^2 \theta}} = \sqrt{36(1 + \tan^2 \theta) + 16(1 + \cot^2 \theta)}$$

Since
$$\frac{36\tan^2\theta + 16\cot^2\theta}{2} \ge \sqrt{36\tan^2\theta \cdot 16\cot^2\theta}$$

$$36\tan^2\theta + 16\cot^2\theta \ge 2 \times 6 \times 4$$

$$AB_{min} = \sqrt{52 + 36 \tan^2 \theta + 16 \cot^2 \theta} = 10$$

4. If
$$\sum_{r=0}^{2023} r^2 \cdot {}^{2023}C_r = 2023 \times \alpha \times 2^{2022}$$
, then the value of α is-

Ans.

Sol.
$$\sum_{r=0}^{n} r^2 \cdot {}^{n}C_{r}$$

$$\begin{array}{c}
\overline{r=0} \\
(1) \ 1011 \\
(2) \ 1012
\end{array}$$

$$\sum_{r=0}^{n} r^2 \cdot {^{n}C_r} \\
\sum_{r=0}^{n} (r(r-1)+r)^{n} C_r$$

$$\sum_{r=0}^{n} \left\{ n(n-1)^{n-2} C_{r-2} + n^{n-1} C_{r-1} \right\}$$

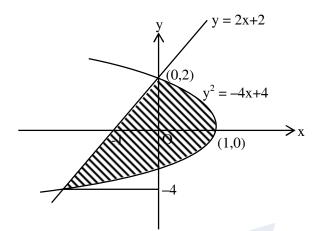
$$= n(n-1)2^{n-2} + n \times 2^{n-1}$$

=
$$n(n-1)2^{n-2} + n \times 2^{n-1}$$

= $2023 [2022 2^{2021} + 2^{2022}]$

$$= 2023 \times 2^{2022} \times 1012$$

- There are 12 subjects in a class, out of which 5 are language subjects. A student has to choose 5. 5 subjects in which atmost 2 are language subjects. Find no. of ways to do so.
 - (1)546
- (2)540
- (3)456
- (4)567


Ans. **(1)**

Sol.
$${}^{7}C_{5} + {}^{7}C_{4} {}^{5}C_{1} + {}^{7}C_{3} {}^{5}C_{2}$$

= 21 + 175 + 350 = 546

- 6. Find the area bounded by the curves $y^2 = -4x + 4$ and y = 2x + 2.
 - (1) 27
- (2) 9
- $(3) \frac{27}{4}$
- $(4) \frac{9}{2}$

Ans. (2)

Sol. $A = \int_{-4}^{2} \left(\frac{4 - y^2}{4} - \frac{2y - 4}{4} \right) dy = \int_{-4}^{2} \frac{1}{4} (4 - y^2 - 2y + 4) dy = \frac{1}{4} \int_{-4}^{2} (-y^2 - 2y + 8) dy$

$$= \frac{1}{4} \left[-\frac{y^3}{3} - y^2 + 8y \right]_{-4}^{2} = \frac{1}{4} \left[\left(-\frac{8}{3} - 4 + 16 \right) - \left(\frac{64}{3} - 16 - 32 \right) \right] = \frac{1}{4} \times \left(-\frac{72}{3} + 60 \right) = 9 \text{ sq. units}$$

- 7. If $x^2 4x + 3 = x[x] [x]$, where [.] represents the greatest integer function then:
 - (1) No. of solutions in $(-\infty, 1)$ are 1
- (2) No. of solutions in $(-\infty,\infty)$ are 1
- (3) No. of solutions in $(1,\infty)$ are 2
- (4) No. of solutions in $(3,\infty)$ are infinite

Ans. (2)

Sol. $(x-1)(x-3) = (x-1) \cdot [x]$

$$x - 3 = [x]$$
 or $x = 1$

 $Case\text{-}I:x\in I$

Case-II : x ∉ I

$$x - 3 = x$$

No solution

No solution

- : only 1 solution in R.
- 8. If $\begin{bmatrix} 1 & \alpha & \alpha^2 \\ c & a & b \\ 1 & 1 & 1 \end{bmatrix}$ is a singular matrix and α is a root of the equation $(a b)x^2 + (b c)x + (c a) = 0$,

then the value of $\frac{(a-b)^2}{(b-c)(c-a)} + \frac{(b-c)^2}{(c-a)(a-b)} + \frac{(c-a)^2}{(a-b)(b-c)}$ is

- (1) 3
- (2) 6
- (3) 9
- (4) 12

Ans. (1)

Sol.
$$\begin{bmatrix} 1 & \alpha & \alpha^2 \\ c & a & b \\ 1 & 1 & 1 \end{bmatrix} = 0$$

$$\Rightarrow$$
 $(a - b) + (b - c)\alpha + (c - a)\alpha^2 = 0$

Also,
$$(a - b)\alpha^2 + (b - c)\alpha + (c - a) = 0$$

$$\frac{(a-b)^2}{(b-c)(c-a)} + \frac{(b-c)^2}{(c-a)(a-b)} + \frac{(c-a)^2}{(a-b)(b-c)} = \frac{(a-b)^3 + (b-c)^3 + (c-a)^3}{(a-b)(b-c)(c-a)}$$

$$= \frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)} = 3$$

9. Two lines are given by
$$\frac{x-2}{3} = \frac{y-1}{3} = \frac{z-0}{2}$$
 and $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z-1}{3}$ then shortest distance

between lines is-

$$(1) \frac{6}{\sqrt{43}}$$

$$(1) \frac{6}{\sqrt{43}} \qquad (2) \frac{11}{\sqrt{43}}$$

(3)
$$\frac{3}{\sqrt{43}}$$
 (4) $\frac{5}{\sqrt{43}}$

$$(4) \frac{5}{\sqrt{43}}$$

EE READY?

Ans.

Sol.
$$s.d. = \left| \frac{(a_1 - a_2).(\overline{p} \times \overline{q})}{(\overline{p} \times \overline{q})} \right|$$
$$= \left| \frac{(\hat{i} - \hat{j} - \hat{k}).(5\hat{i} - 3\hat{j} - 3\hat{k})}{|5\hat{i} - 3\hat{j} - 3\hat{k}|} \right|$$

$$=\frac{11}{\sqrt{43}}$$

10. Let
$$f(x) = \begin{bmatrix} x^2 \sin \frac{1}{x} & ; & x \neq 0 \\ 0 & ; & x = 0 \end{bmatrix}$$
, then

- (1) f is continuous and f is discontinuous at x = 0
- (2) f and f' both are continuous at x = 0
- (3) f and f' both are discontinuous at x = 0
- (4) f is discontinuous and f' is continuous at x = 0

Ans.

Sol.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0 = f(0)$$

 \therefore f(x) continuous at x = 0

$$f'(x) = 2x\sin\frac{1}{x} + x^2\left(\cos\frac{1}{x}\right)\left(\frac{-1}{x^2}\right)$$

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

lim f'(x) does not exists

 \therefore f'(x) is discontinuous at x = 0

11.
$$\lim_{t\to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \dots + n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t}$$
 is equal to

- $(1) n^2$
- (2) n

- (3) $\frac{n(n+1)}{2}$ (4) $n^2 + n$

Ans.

Sol.
$$n \left[\left(\frac{1}{n} \right)^{\frac{1}{\sin^2 t}} + \left(\frac{2}{n} \right)^{\frac{1}{\sin^2 t}} + \dots + \left(\frac{n-1}{n} \right)^{\frac{1}{\sin^2 t}} + 1 \right]^{\sin^2 t} = n$$

- **12.** Find the minimum distance of the point (7, -4, -3) from the plane formed by the points (2, 2, -1), (3, 4, 2) and (7, 0, 6).
 - $(1) \frac{\sqrt{19}}{4}$
- (2) $\sqrt{19}$ (3) $\frac{\sqrt{19}}{3}$
- $(4) \sqrt{\frac{19}{2}}$

Ans.

Sol.
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & -4 & 4 \end{vmatrix} = <5, 2, -3>$$

Plane: 5x + 2y - 3z = 17

Distance =
$$\left| \frac{35 - 8 + 9 - 17}{\sqrt{25 + 4 + 9}} \right| = \frac{19}{\sqrt{38}} = \sqrt{\frac{19}{2}}$$

If 'N' is decided by rolling a normal die and $\frac{k'}{6}$ is the probability that the system of equations **13.**

$$x + y + z = 0$$

$$Nx + y + z = 2$$

$$3x + (N-3)y + z = 6$$

has a unique solution, then find sum of all possible values of 'k' and 'n'

(20)Ans.

Sol. $D \neq 0$ for unique solution,

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ N & 1 & 1 \\ 3 & N-3 & 1 \end{vmatrix} \neq 0$$

$$\Rightarrow$$
 $(N-1)(N-4) \neq 0$

$$\Rightarrow$$
 N \neq 1, 4

∴ N can be 2, 3, 5, 6

Also, required probability = $\frac{4}{6} \Rightarrow k = 4$

Hence, sum = (2 + 3 + 5 + 6) + 4

= 20

14. Numbers are formed using digits 1, 2, 3, 4, 1, 2, 3, 4 & 1 then the number of 9 digits numbers such that even digits occupy even places are-

Ans.

2, 2, 4, 4 occupy 2^{nd} , 4^{th} , 6^{th} and 8^{th} places Sol.

no. of numbers = $\frac{4!}{2! \cdot 2!} \cdot \frac{5!}{3! \cdot 2!} = 60$

A circle with centre = (2, 0) and largest possible radius is inscribed in ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$. **15.** If the circle passes through the point $(1, \alpha)$, then find value of $5\alpha^2$.

Ans.

Sol. $P \equiv (6 \cos \theta, 4 \sin \theta)$

$$N; \frac{36x}{6\cos\theta} - \frac{16y}{4\sin\theta} = 20$$

Passes (2, 0)

$$\frac{6}{\cos \theta} = 10 \Rightarrow \cos \theta = \frac{3}{5}$$

$$\Rightarrow P \equiv \left(\frac{18}{5}, \frac{16}{5}\right)$$

$$R = \sqrt{\frac{64}{25} + \frac{256}{25}} = \sqrt{\frac{320}{25}}$$

S:
$$(x-2)^2 + y^2 = \frac{320}{25}$$

Passes $(1, \alpha)$

$$\alpha^2 = \frac{64}{5} - 1 = \frac{59}{5}$$

EE READY? If $(1-\sqrt{3}i)^{200} = 2^{199}(p+iq)$ then the equation whose roots are $p+q+q^2$ and $p-q+q^2$ is **16.**

(1)
$$x^2 + 4x - 1 = 0$$
 (2) $x^2 + 4x + 1 = 0$ (3) $x^2 - 4x + 1 = 0$ (4) $x^2 + 2x + 2 = 0$

$$(3) x^2 - 4x + 1 = 0$$

$$(4) x^2 + 2x + 2 = 0$$

Ans.

 $2^{200} \left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)^{200} = 2^{199} (p + iq)$ Sol.

$$(-2\omega)^{200}$$

$$2^{200} \cdot \omega^2 =$$

$$2^{200} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 2^{199} (p + iq)$$

$$p = -1, q = -\sqrt{3}$$

so roots are
$$p + q + q^2 = -1 - \sqrt{3} + 3 = 2 - \sqrt{3}$$

$$p - q + q^2 = -1 + \sqrt{3} + 3 = 2 + \sqrt{3}$$

Equation is $x^2 - 4x + 1 = 0$

Tangent is drawn at a point on the parabola $y^2 = 24x$, it intersects the hyperbola xy = 2 at points A **17.** and B such that locus of mid point of AB is a parabola whose.

(1) Directrix is
$$x = \frac{3}{2}$$
 (2) Latus rectum is 3 (3) Directrix is $x = -\frac{3}{4}$ (4) Latus rectum is $\frac{3}{2}$

Ans. (2)

Sol. Tangent to the parabola is $x - ty + 6t^2 = 0$

Equation of chord of xy = 2 with middle point M(h, k), is $T = S_1$

$$\Rightarrow \frac{xk + yh}{2} - 2 = hk - 2$$

$$\Rightarrow xk + yh - 2hk = 0 \qquad ...(ii)$$

Comparing equation (i) and (ii) gives

$$k^2 = -3h$$

or locus of M is $y^2 = -3x$

Hence length of latus rectum is 3

If y = y(x) is solution of differential equation $x^3 dy + (xy - 1) dx = 0$ and $y\left(\frac{1}{2}\right) = (3 - e)$, then **18.**

y(1) is equal to

(3)
$$e^{\frac{1}{e}}$$

$$(4) e^2$$

Ans.

Sol.
$$\frac{dy}{dx} = \frac{1 - xy}{x^3}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{\mathrm{y}}{\mathrm{x}^2} = \frac{1}{\mathrm{x}^3}$$

I.F. =
$$e^{\int \frac{1}{x^2} dx}$$
 = $e^{-\frac{1}{x}}$

$$y.\left(e^{-\frac{1}{x}}\right) = \int \frac{1}{x^3} e^{-\frac{1}{x}} dx$$

Let
$$-\frac{1}{x} = t \Rightarrow \frac{1}{x^2} dx = dt$$

$$\frac{dy}{dx} + \frac{y}{x^2} = \frac{1}{x^3}$$

$$I.F. = e^{\int \frac{1}{x^2} dx} = e^{-\frac{1}{x}}$$

$$y. \left(e^{-\frac{1}{x}} \right) = \int \frac{1}{x^3} e^{-\frac{1}{x}} dx$$

$$Let - \frac{1}{x} = t \Rightarrow \frac{1}{x^2} dx = dt$$

$$y e^{-\frac{1}{x}} = \int -te^t dt = -[te^t - e^t] + c$$

$$y e^{-\frac{1}{x}} = \frac{1}{x} e^{-\frac{1}{x}} + e^{-\frac{1}{x}} + c$$

$$y = \frac{1}{x} + 1 + ce^{\frac{1}{x}}$$
 where $y(\frac{1}{2}) = 3 - e$

$$3 - e = 2 + 1 + ce^2$$

$$c = -\frac{1}{e}$$

$$y = \frac{1}{x} + 1 - e^{\frac{1}{x} - 1}$$

$$x = 1$$

$$y = \frac{1}{1} + 1 - 1 \Rightarrow y = 1$$

If A and B are two square matrices of same order such that $A^2 B = A^2 + B$, then (1) $A^2B = BA^2$ (2) $A^2 B = -BA^2$ (3) A = I or B = I (4) $A^2 = I$ 19.

$$(1) A^2B = BA^2$$

(2)
$$A^2 B = -BA^2$$

(3)
$$A = I \text{ or } B = I$$

$$(4) A^2 = I$$

Ans. **(1)**

Sol.
$$A^2 B = A^2 + B$$

 $\Rightarrow (A^2 - I) (B - I) = I$
 $\Rightarrow (A^2 - I) (B - I) = (B - I) (A^2 - I)$
 $\Rightarrow A^2 B = BA^2$

 $\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$ is equal to 20.

- (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{2}$
- (4) 0

Ans.

Consider a G.P. with 4th term 500. If S_n denotes sum of first 'n' terms of G.P. such that $S_6 > S_5 + 1$ 21. and $S_7 < S_6 + 1$. If common ratio of G.P. is $\left(\frac{1}{m}\right)$ where $m \in \mathbb{N}$; then find number of possible values of m.

Ans.

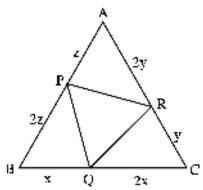
 $ar^3 = 500$ Sol.

$$S_6 > S_5 + 1 \Rightarrow T_6 > 1 \Rightarrow ar^5 > 1$$

 $S_7 < S_6 + 1 \Rightarrow T_7 < 1 \Rightarrow ar^6 < 1$

∴
$$r^2 > \frac{1}{500}$$
 and $r^3 < \frac{1}{500}$
⇒ $3\sqrt{500} < m < \sqrt{500}$

$$m \in [8, 22]$$


Number of values of m = 15

If P, Q, R lies on the sides AB, BC and CA respectively of triangle ABC dividing them in the 22. ratio 1:2, then the ratio of areas of triangle ABC and triangle PQR is

- (1) 2
- (3)4
- $(4) \frac{5}{2}$

Ans. (2)

Area of $(\Delta BPQ + \Delta CQR + \Delta APR + \Delta PQR)$ = area of ΔABC Sol.

 $\frac{1}{2} x (2z) \sin B + \frac{1}{2} (2x) (y) \sin c + \frac{1}{2} (z) (2y) \sin A + \Delta PQR = \Delta$

$$\Delta ABC = \Delta = \frac{1}{2} (3z) (3y) (\sin A) = \frac{1}{2} (3x) (3z) \sin B = \frac{1}{2} (3x) (3y) \sin C$$

$$\frac{2\Delta}{9} + \frac{2\Delta}{9} + \frac{2\Delta}{9} + \Delta PQR = \Delta$$

$$\Delta PQR = \Delta - \frac{6\Delta}{9} = \frac{\Delta}{3}$$

Ratio of $\triangle ABC$: $\triangle PQR = \frac{\triangle}{\frac{\Delta}{3}} = 3$

- 23. If $R: N \to N$ such that aRb is gcd $(a, b) = 1 & 2a \neq b$, then relation R is.
 - (1) Reflexive and transitive
- (2) Reflexive but not transitive
- (3) Symmetric but not transitive
- (4) Symmetric and transitive

Ans. (3)

Sol. Not reflexive

because gcd(a, a) = a (which is not always equal to 1)

Symmetric

gcd(a, b) = gcd(b, a) = 1 hence symmetric

Transitive

$$gcd(5,3) = 1, gcd(3,25) = 1 but gcd(5,25) = 5$$

hence not transitive

24. Consider the vectors $\vec{u} = \frac{\hat{i} + 11\hat{j} - 9\hat{k}}{2}$ and $\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Consider a vector \vec{w} such that

$$\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{u} + \lambda \overrightarrow{v}; \overrightarrow{v} \cdot \overrightarrow{w} = 2$$
 then find $\overrightarrow{u} \cdot \overrightarrow{w}$. (Data may be different)

- (1) 4
- (2) 3
- (3) 2
- (4) 1

Ans. (4)

Sol.
$$\overrightarrow{v} \times (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{v} \times \overrightarrow{u}$$

$$2\vec{v} - 3\vec{w} = -10\hat{i} + 5\hat{j} + 5\hat{k}$$

$$\Rightarrow \vec{w} = \frac{2\hat{i} + 2\hat{j} + 2\hat{k} + 10\hat{i} - 5\hat{j} - 5\hat{k}}{3}$$

$$\vec{w} = 4\hat{i} - \hat{j} - \hat{k}$$

$$\therefore \vec{u} \cdot \vec{w} = 2 + \left(-\frac{11}{2}\right) + \frac{9}{2} = 1$$